New! Sign up for our free email newsletter.
Science News
from research organizations

Heavy metal glass helps light go the distance

Date:
June 18, 2010
Source:
American Institute of Physics
Summary:
The fiber optic cable networks linking the world are an essential part of modern life. To keep up with ever-increasing demands for more bandwidth, scientists are working to improve the optical amplifiers that boost fiber optic signals across long distances. Optical amplifier research is focused on glass fibers doped with rare earth elements. The elements, such as erbium and ytterbium, amplify light signals when excited by a laser.
Share:
FULL STORY

The fiber optic cable networks linking the world are an essential part of modern life. To keep up with ever-increasing demands for more bandwidth, scientists are working to improve the optical amplifiers that boost fiber optic signals across long distances.

Optical amplifier research is focused on glass fibers doped with rare earth elements. The elements, such as erbium and ytterbium, amplify light signals when excited by a laser. Many different combinations of elements have been tried in pursuit of amplifiers operating in different communication wavebands. However, obtaining effective signal amplifications in those rare earth ions is challenging and requires advanced materials and manufacturing. And to be commercially useful, the glass must be both stable and low-loss, requiring a little energy to boost signals.

An experimental glass developed by a team from Dalian Polytechnic University in China and the City University of Hong Kong solves some of these manufacturing problems. The researchers incorporated heavy metal and alkali/alkaline earth elements such as lead, bismuth, gallium, lithium, potassium, and barium in an oxide glass doped with trivalent samarium rare earth ion. Among oxide glasses, the maximum phonon energy of these materials is nearly the lowest, which may induce multi-channel fluorescence emissions and obvious enhancement of quantum efficiencies of samarium ions.

During laboratory tests, the samarium glass released infrared energy at a wavelength of 1185 nanometers -- within the window of fiber optical telecommunications -- among other wavelengths. The results, reported in the Journal of Applied Physics, published by the American Institute of Physics (AIP), indicate adding samarium to heavy metal gallate glass is worth exploring for use in both fiber optic networks and lasers.


Story Source:

Materials provided by American Institute of Physics. Note: Content may be edited for style and length.


Journal Reference:

  1. Hai Lin et al. Optical evaluation of multi-channel radiative transitions originating from 4G5/2 level of Sm3 in heavy-metal-gallate glasses. Journal of Applied Physics, 2010; [abstract]

Cite This Page:

American Institute of Physics. "Heavy metal glass helps light go the distance." ScienceDaily. ScienceDaily, 18 June 2010. <www.sciencedaily.com/releases/2010/06/100616090033.htm>.
American Institute of Physics. (2010, June 18). Heavy metal glass helps light go the distance. ScienceDaily. Retrieved December 11, 2024 from www.sciencedaily.com/releases/2010/06/100616090033.htm
American Institute of Physics. "Heavy metal glass helps light go the distance." ScienceDaily. www.sciencedaily.com/releases/2010/06/100616090033.htm (accessed December 11, 2024).

Explore More

from ScienceDaily

RELATED STORIES