New! Sign up for our free email newsletter.
Science News
from research organizations

How p53 is inactivated in cancerous cells, allowing tumors to grow

Date:
February 15, 2011
Source:
University of Alberta Faculty of Medicine & Dentistry
Summary:
One of the most important genes in the human genome is called p53 and its function is to suppress tumors, according to a team of researchers. They discovered the mechanism by which p53 is inactivated in cancerous cells, allowing tumors to grow.
Share:
FULL STORY

One of the most important genes in the human genome is called p53 and its function is to suppress tumours, according to Roger Leng, a researcher in the Faculty of Medicine & Dentistry. Leng has discovered the mechanism by which p53 is inactivated in cancerous cells, allowing tumours to grow.

"Successful completion of the proposed experiments could lead to novel anti-cancer therapies that could potentially improve the prognosis for cancer patients and reduce the public health burden from cancer," said Leng.

It has long been known by scientists that another protein, MDM2, lowers p53 in the body, but in cancerous cells p53 is inactivated in more than 50 per cent of all human tumours. MDM2 does not have the ability to functionally silence the tumour suppressing protein on its own, leaving scientists wondering what molecule in the body is helping MDM2 to nearly eliminate p53 in cancerous cells.

Leng's lab has answered that question and the culprit is called UBE4B. Leng made the discovery because he found that UBE4B binds with both p53 and MDM2. From there his lab was able to discover the relationship between the proteins.

Paired with MDM2, also known as HDM2 in humans, the two proteins completely degrade p53 in a laboratory model. This is a process known as poly-ubiquitination, which means a specific protein completely disappears in a cell.

They also did experiments on cancerous human brain tissue and found the same results.

"They have the same function," said Leng. "The idea now is you can target UBE4B and MDM2 won't function."

This discovery was published online on the Nature Medicine website on Feb. 13.

Now, the Alberta Heritage Foundation for Medical Research Scholar and Canadian Institutes of Health Research funded scientist wants to further understand the mechanisms by which UBE4B functions.

"We want to understand how it regulates MDM2," said Leng. "We also want to see, if you get DNA damage, what happens in UBE4B and p53."

All of which could provide answers which eventually lead to a pharmacological target for cancer therapy.


Story Source:

Materials provided by University of Alberta Faculty of Medicine & Dentistry. Note: Content may be edited for style and length.


Journal Reference:

  1. Hong Wu, Scott L Pomeroy, Manuel Ferreira, Natalia Teider, Juliana Mariani, Keiichi I Nakayama, Shigetsugu Hatakeyama, Victor A Tron, Linda F Saltibus, Leo Spyracopoulos, Roger P Leng. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nature Medicine, 2011; DOI: 10.1038/nm.2283

Cite This Page:

University of Alberta Faculty of Medicine & Dentistry. "How p53 is inactivated in cancerous cells, allowing tumors to grow." ScienceDaily. ScienceDaily, 15 February 2011. <www.sciencedaily.com/releases/2011/02/110214092939.htm>.
University of Alberta Faculty of Medicine & Dentistry. (2011, February 15). How p53 is inactivated in cancerous cells, allowing tumors to grow. ScienceDaily. Retrieved October 15, 2024 from www.sciencedaily.com/releases/2011/02/110214092939.htm
University of Alberta Faculty of Medicine & Dentistry. "How p53 is inactivated in cancerous cells, allowing tumors to grow." ScienceDaily. www.sciencedaily.com/releases/2011/02/110214092939.htm (accessed October 15, 2024).

Explore More

from ScienceDaily

RELATED STORIES