New! Sign up for our free email newsletter.
Science News
from research organizations

Progress in tissue engineering to repair joint damage in osteoarthritis

Date:
June 9, 2011
Source:
American Chemical Society
Summary:
Medical scientists now have "clear" evidence that the damaged cartilage tissue in osteoarthritis and other painful joint disorders can be encouraged to regrow and regenerate, and are developing tissue engineering technology that could help millions of patients with those disorders. That's the conclusion of a new analysis of almost 100 scientific studies on the topic.
Share:
FULL STORY

Medical scientists now have "clear" evidence that the damaged cartilage tissue in osteoarthritis and other painful joint disorders can be encouraged to regrow and regenerate, and are developing tissue engineering technology that could help millions of patients with those disorders. That's the conclusion of a new analysis of almost 100 scientific studies on the topic, published in ACS's journal Molecular Pharmaceutics.

Tong Cao, Wei Seong Toh and colleagues point out that damage to so-called articular cartilage -- the smooth, white, rubbery tissue that covers and cushions the ends of bones in joints -- is one of the most challenging problems in medicine. That's because the tissue lacks blood vessels and has little ability to repair itself and regrow. Wear-and-tear damage thus builds up over the years, resulting in conditions like osteoarthritis, which affects 27 million people in the United States alone. Osteoarthritis is a fast-growing public health problem because of the world's aging population and because of a sharp increase in obesity, which increases wear on joint cartilage. To assess progress toward medical use of tissue engineering to treat joint damage, the researchers scanned global research on the topic.

They found that scientists have developed many new tissue engineering methods, including implantation of so-called "scaffolds" made of biomaterials that mimic cartilage matrix in the body. The scaffolds could guide the transplanted cells, orchestrate the host cell response, provide structures and microenvironment substances to help rebuild cartilage at the injury site. "In summary, there is promise in future research involving the development of multi-functional biomaterial delivery systems that affect cartilage tissue regeneration on multiple levels," the article states.

The authors acknowledge funding from the Agency for Science, Technology and Research Singapore and the U.S. Department of Veterans Affairs.


Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. Wei Seong Toh, Myron Spector, Eng Hin Lee, Tong Cao. Biomaterial-Mediated Delivery of Microenvironmental Cues for Repair and Regeneration of Articular Cartilage. Molecular Pharmaceutics, 2011; 110422093921002 DOI: 10.1021/mp100437a

Cite This Page:

American Chemical Society. "Progress in tissue engineering to repair joint damage in osteoarthritis." ScienceDaily. ScienceDaily, 9 June 2011. <www.sciencedaily.com/releases/2011/06/110608122815.htm>.
American Chemical Society. (2011, June 9). Progress in tissue engineering to repair joint damage in osteoarthritis. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2011/06/110608122815.htm
American Chemical Society. "Progress in tissue engineering to repair joint damage in osteoarthritis." ScienceDaily. www.sciencedaily.com/releases/2011/06/110608122815.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES