New! Sign up for our free email newsletter.
Science News
from research organizations

How cells make the most of limited resources

Date:
February 28, 2012
Source:
European Molecular Biology Laboratory
Summary:
The bacterium that causes atypical pneumonia is helping scientists uncover how cells make the most of limited resources. By measuring all the proteins this bacterium produces, scientists have found that the secret is fine-tuning.
Share:
FULL STORY

The bacterium Mycoplasma pneumoniae, which causes atypical pneumonia, is helping scientists uncover how cells make the most of limited resources. By measuring all the proteins this bacterium produces, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and collaborators, have found that the secret is fine-tuning.

Like a mechanic can fine-tune a car after it has left the factory, cells have ways to tweak proteins, changing their chemical properties after production -- so-called post-translational modifications. Anne-Claude Gavin, Peer Bork and colleagues at EMBL measured how many of M. pneumoniae's proteins had certain modifications. They found that two forms of tweaking which were known to be common in our own cells are equally prevalent in this simple bacterium. Called phosphorylation and lysine acetylation, these two types of post-translational modification also talk to and interfere with each other: the scientists found that disrupting one can cause changes in the other. Since M. pneumoniae is one of the living organisms with the fewest different proteins, this interplay between phosphorylation and lysine acetylation may be a way of getting additional functions out of a limited number of proteins: by tweaking each protein in several ways, enabling it to perform a variety of tasks. And, as more complex cells like our own share the same protein-tweaking tactics, it is probably an ancient strategy that evolved before our branch of the evolutionary tree and M.pneumoniae's branched their separate ways.

The scientists also found that phosphorylation levels in M. pneumoniae control how much of each protein the bacterium has. Interestingly, it does so not only by influencing whether protein-building instructions encoded in DNA are read, but also by altering proteins that are involved in building other proteins. This fine-tuning may enable the cell to react faster to changing needs or situations.

When they disrupted M. pneumoniae's ability to tweak proteins, Gavin, Bork and colleagues also discovered that disaster doesn't necessarily ensue. As in our own cells, proteins in this bacterium rarely work alone. They interact with each other, work together, or perform different steps in chain reactions. The scientists found that these protein networks have a certain buffering ability: disrupting one protein can affect its immediate partners, but the problems may not propagate throughout the whole network. The scientists hope that mapping the different networks may one day enable them to predict where a targeted disruption might do the most damage, which could eventually provide valuable information for drug design.

The work, recently published online  in Molecular Systems Biology, was conducted in collaboration with the Centro de Regulacion Genomica in Barcelona, Spain, Utrecht University in the Netherlands, and Georg-August University Göttingen and Heidelberg University, both in Germany.


Story Source:

Materials provided by European Molecular Biology Laboratory. Note: Content may be edited for style and length.


Journal Reference:

  1. Vera van Noort, Jan Seebacher, Samuel Bader, Shabaz Mohammed, Ivana Vonkova, Matthew J Betts, Sebastian Kühner, Runjun Kumar, Tobias Maier, Martina O'Flaherty, Vladimir Rybin, Arne Schmeisky, Eva Yus, Jörg Stülke, Luis Serrano, Robert B Russell, Albert JR Heck, Peer Bork, Anne-Claude Gavin. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Molecular Systems Biology, 2012; 8 DOI: 10.1038/msb.2012.4

Cite This Page:

European Molecular Biology Laboratory. "How cells make the most of limited resources." ScienceDaily. ScienceDaily, 28 February 2012. <www.sciencedaily.com/releases/2012/02/120228102019.htm>.
European Molecular Biology Laboratory. (2012, February 28). How cells make the most of limited resources. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2012/02/120228102019.htm
European Molecular Biology Laboratory. "How cells make the most of limited resources." ScienceDaily. www.sciencedaily.com/releases/2012/02/120228102019.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES