New! Sign up for our free email newsletter.
Science News
from research organizations

First method for generating specific, inheritable mutations revealed by researchers

Date:
May 8, 2014
Source:
University of Vienna
Summary:
The first method for generating specific and inheritable mutations in the species of the Platynereis model system has been revealed by researchers. The researchers found out that the induced mutations are heritable, demonstrating that TALENs can be used for generating mutant lines in this bristle worm. "This new tool opens the door for detailed in vivo functional analyses in Platynereis and can also facilitate further technical developments. For example, we hope to use TALENs to insert fluorescent reporter genes into the genome. In this way we can study how gene expression is regulated across the entire lifecycle," explains the study's first author.
Share:
FULL STORY

Researchers at the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna made a breakthrough for the Platynereis model system, as they describe the first method for generating specific and inheritable mutations in the species. The method, in combination with other tools, now places this marine bristle worm in an excellent position to advance research at the frontiers of neurobiology, chronobiology, evolutionary developmental biology and marine biology. The study and a review on Platynereis dumerilii genetic methods were chosen by the journal Genetics as one of the May 2014 Highlights and also got the cover image.

Many fascinating biological phenomena, of which we currently have little to no molecular understanding, can be observed in the tiny marine bristle worm Platynereis dumerilii. It displays a slow rate of evolution, which permits analyses of ancestral genes and cell types, possesses a vertebrate-type hormonal system, as well as the ability to regenerate large pieces of its body. Furthermore, its reproductive timing is controlled by multiple timers -- a feature likely to be common to many other organisms. These characteristics make it an ideal model for evolutionary studies as well as for chronobiology, amongst other research fields. However, dissecting Platynereis gene function in vivo had remained challenging due to a lack of available tools.

TALENs as a new tool to engineer targeted modifications in Platynereis genes

To address this need, scientists from the Max F. Perutz Laboratories (MFPL) and the Research Platform "Marine Rhythms of Life" of the University of Vienna and supported by the VIPS (Vienna International Postdoctoral program) have now established customized transcriptional activator-like effector nucleases (TALENs) as a tool to engineer targeted modifications in Platynereis genes. These tailored enzymes bind specific DNA sequences and "cut" the genome at these locations. The repair mechanisms of the cell promptly repair the damage, however small errors in the form of insertions and deletions can be introduced during the repair process. The result is the generation of small mutations that render the protein product of the gene non-functional -- allowing the generation of the first-ever Platynereis mutants.

Future directions

The researchers found out that the induced mutations are heritable, demonstrating that TALENs can be used for generating mutant lines in this bristle worm. "This new tool opens the door for detailed in vivo functional analyses in Platynereis and can also facilitate further technical developments. For example, we hope to use TALENs to insert fluorescent reporter genes into the genome. In this way we can study how gene expression is regulated across the entire lifecycle," explains first author Stephanie Bannister, VIPS Postdoc in Florian Raible's group at the Department of Microbiology, Immunobiology and Genetics at the University of Vienna. She spearheaded the establishment of the technique. "In addition, we have provided a streamlined workflow that can serve as a template for the establishment of TALEN technology in other non-conventional and emerging model organisms," Stephanie Bannister adds.


Story Source:

Materials provided by University of Vienna. Note: Content may be edited for style and length.


Journal References:

  1. S. Bannister, O. Antonova, A. Polo, C. Lohs, N. Hallay, A. Valinciute, F. Raible, K. Tessmar-Raible. TALENs Mediate Efficient and Heritable Mutation of Endogenous Genes in the Marine Annelid Platynereis dumerilii. Genetics, 2014; 197 (1): 77 DOI: 10.1534/genetics.113.161091
  2. J. Zantke, S. Bannister, V. B. V. Rajan, F. Raible, K. Tessmar-Raible. Genetic and Genomic Tools for the Marine Annelid Platynereis dumerilii. Genetics, 2014; 197 (1): 19 DOI: 10.1534/genetics.112.148254

Cite This Page:

University of Vienna. "First method for generating specific, inheritable mutations revealed by researchers." ScienceDaily. ScienceDaily, 8 May 2014. <www.sciencedaily.com/releases/2014/05/140508111028.htm>.
University of Vienna. (2014, May 8). First method for generating specific, inheritable mutations revealed by researchers. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2014/05/140508111028.htm
University of Vienna. "First method for generating specific, inheritable mutations revealed by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/05/140508111028.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES