Science News
from research organizations

Satellite images reveal ocean acidification from space

Date:
February 16, 2015
Source:
University of Exeter
Summary:
Pioneering techniques that use satellites to monitor ocean acidification are set to revolutionize the way that marine biologists and climate scientists study the ocean. This new approach offers remote monitoring of large swathes of inaccessible ocean from satellites that orbit the Earth some 700 km above our heads.
Share:
FULL STORY

The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite can be used to measure ocean acidification.
Credit: ESA/AOES Medialab

Pioneering techniques that use satellites to monitor ocean acidification are set to revolutionise the way that marine biologists and climate scientists study the ocean.

This new approach, published in the journal Environmental Science and Technology, offers remote monitoring of large swathes of inaccessible ocean from satellites that orbit the Earth some 700 km above our heads.

Each year more than a quarter of global CO2 emissions from burning fossil fuels and cement production are taken up by the Earth's oceans. This process turns the seawater more acidic, making it more difficult for some marine life to live. Rising CO2 emissions, and the increasing acidity of seawater over the next century, has the potential to devastate some marine ecosystems, a food resource on which we rely, and so careful monitoring of changes in ocean acidity is crucial.

Researchers at the University of Exeter, Plymouth Marine Laboratory, Institut français de recherche pour l'exploitation de la mer (Ifremer), the European Space Agency and a team of international collaborators are developing new methods that allow them to monitor the acidity of the oceans from space.

Dr Jamie Shutler from Geography at the University of Exeter who is leading the research said: "Satellites are likely to become increasingly important for the monitoring of ocean acidification, especially in remote and often dangerous waters like the Arctic. It can be both difficult and expensive to take year-round direct measurements in such inaccessible locations. We are pioneering these techniques so that we can monitor large areas of the Earth's oceans allowing us to quickly and easily identify those areas most at risk from the increasing acidification."

Current methods of measuring temperature and salinity to determine acidity are restricted to in situ instruments and measurements taken from research vessels. This approach limits the sampling to small areas of the ocean, as research vessels are very expensive to run and operate.

The new techniques use satellite mounted thermal cameras to measure ocean temperature while microwave sensors measure the salinity. Together these measurements can be used to assess ocean acidification more quickly and over much larger areas than has been possible before.

Dr Peter Land from Plymouth Marine Laboratory who is lead author of the paper said: "In recent years, great advances have been made in the global provision of satellite and in situ data. It is now time to evaluate how to make the most of these new data sources to help us monitor ocean acidification, and to establish where satellite data can make the best contribution."

A number of existing satellites can be used for the task; these include the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) sensor that was launched in 2009 and NASA's Aquarius satellite that was launched in 2011.

The development of the technology and the importance of monitoring ocean acidification are likely to support the development of further satellite sensors in the coming years.


Story Source:

Materials provided by University of Exeter. Note: Content may be edited for style and length.


Journal Reference:

  1. Peter E. Land, Jamie D. Shutler, Helen S. Findlay, Fanny Girard-Ardhuin, Roberto Sabia, Nicolas Reul, Jean-Francois Piolle, Bertrand Chapron, Yves Quilfen, Joseph Salisbury, Douglas Vandemark, Richard Bellerby, Punyasloke Bhadury. Salinity from Space Unlocks Satellite-Based Assessment of Ocean Acidification. Environmental Science & Technology, 2015; 150127113132008 DOI: 10.1021/es504849s

Cite This Page:

University of Exeter. "Satellite images reveal ocean acidification from space." ScienceDaily. ScienceDaily, 16 February 2015. <www.sciencedaily.com/releases/2015/02/150216064929.htm>.
University of Exeter. (2015, February 16). Satellite images reveal ocean acidification from space. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2015/02/150216064929.htm
University of Exeter. "Satellite images reveal ocean acidification from space." ScienceDaily. www.sciencedaily.com/releases/2015/02/150216064929.htm (accessed May 23, 2017).

RELATED STORIES