Science News
from research organizations

Detecting small metallic contaminants in food via magnetization

A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs)

Date:
July 29, 2015
Source:
Toyohashi University of Technology
Summary:
Researchers have developed a practical metallic-contaminant detector using three high-Tc RF superconducting quantum interference devices for food inspection. While the detection of small metallic contaminants is important for food safety, the sensitivity of currently existing methods is insufficient. The developed method that uses SQUIDs and a digital filter dramatically improves inspection sensitivity; the method could clearly detect a small steel ball with a diameter as small as 0.3 mm.
Share:
FULL STORY

The detection of metallic contaminants in foods is important for our health and safety.

However, existing inspection methods have limitations. For instance, the X-ray radiation method cannot detect contaminants with sizes smaller than 1 mm with current practical X-ray levels, and it cannot be applied for the inspection of foods that have lactic acid bacteria because X-ray radiation causes ionization of such foods.

In this context, recently, researchers at the Department of Environmental and Life Sciences at Toyohashi Tech have developed a practical magnetic metallic contaminant detector using three high-Tc RF superconducting quantum interference devices (SQUIDs) for food inspection.

The detection technique is based on recording the remnant magnetic field of a contaminant using SQUID sensors. SQUID is a high-sensitivity magnetic sensor based on the superconductivity phenomenon.

In the process, a strong magnetic field is applied to food to magnetize the metal fragments inside, and subsequently, these metals, if they are contained in the food, can be detected by sensing their magnetic fields using SQUID sensors. This method is advantageous in the sense that it is both safe and provides a high resolution.

Professor Tanaka, whose team has developed the method, says, "We have developed an inspection system that permits contaminant detection in a food package with a height of 100 mm with three high-Tc RF SQUIDs. To accurately detect even smaller metallic fragments, digital filters have also been used to improve the signal-to-noise ratio. The target size of the metallic contaminant in food with a stand-off distance of 100 mm is 0.5 mm."

He continued, "To reduce the impact of noise as much as possible, the sensor is placed inside a square metallic box designed such that food can be tested as it passes through this box. The box is made of 2-mm iron-nickel alloy plates. Magnetic fields have strong affinities to this iron-nickel alloy. Thus, magnetic fields around the sensor are concentrated in the walls of this box."

In experiments, the developed system was able to clearly detect a steel ball with a diameter as small as 0.3 mm. The system was robust and not affected by electromagnetic waves from nearby mobile phones or from the motion of nearby steel objects. Therefore, the system is a promising tool to detect contaminants in practical situations, and it can significantly aid in enhancing consumer health and safety.


Story Source:

Materials provided by Toyohashi University of Technology. Note: Content may be edited for style and length.


Journal Reference:

  1. S. Tanaka, T. Ohtani, Y. Narita, Y. Hatsukade, S. Suzuki. Development of Metallic Contaminant Detection System Using RF High-Tc SQUIDs for Food Inspection. IEEE Transactions on Applied Superconductivity, 2015; 25 (3): 1 DOI: 10.1109/TASC.2014.2361893

Cite This Page:

Toyohashi University of Technology. "Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs)." ScienceDaily. ScienceDaily, 29 July 2015. <www.sciencedaily.com/releases/2015/07/150729101930.htm>.
Toyohashi University of Technology. (2015, July 29). Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs). ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2015/07/150729101930.htm
Toyohashi University of Technology. "Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs)." ScienceDaily. www.sciencedaily.com/releases/2015/07/150729101930.htm (accessed May 23, 2017).

RELATED STORIES