NEW: Find great deals on the latest gadgets and more in the ScienceDaily Store!
Science News
from research organizations

How two-tone cats get their patches comes to light in cell study

Date:
January 6, 2016
Source:
University of Bath
Summary:
Scientists have discovered how the distinctive piebald patches seen in black and white cats and some horses are formed in the womb. The characteristic piebald patches seen in many domestic animals is caused by the darkly pigmented cells multiplying more slowly so they don't cover the whole of the body, the experts say.
Share:
FULL STORY

The characteristic piebald patches seen in many domestic animals is caused by the darkly pigmented cells multiplying more slowly so they don't cover the whole of the body.
Credit: © ksena32 / Fotolia

Scientists have discovered how the distinctive piebald patches seen in black and white cats and some horses are formed in the womb.

Their insights could shed light on medical conditions that occur early in development, such as holes in the heart, which are caused by cells not moving to the right place as an embryo develops.

Researchers who set out to learn how pigment cells behave in mice found that they move and multiply randomly during early development rather than follow instructions.

Their findings contradict the existing theory that piebald patterns form on animals' coats because pigment cells move too slowly to reach all parts of the embryo before it is fully formed.

The study, by mathematicians and geneticists, shows that there is no complicated cell-to-cell communication to send the cells in a particular direction.

The same mathematical model could now be used to follow other types of cell during early development. Researchers at the Universities of Bath and Edinburgh, who carried out the study, say it could help them better understand conditions linked to early cell positioning.

Dr Richard Mort, from the University of Edinburgh's Medical Research Council Human Genetics Unit said: ''We already know cells move through the developing skin to create pigment. We have discovered that they move and multiply at random which is not what was expected. Using a mathematical model we were then able to show that this simple process could explain piebald patterns.''

Dr Christian Yates a Mathematical Biologist from the University of Bath, added: "Piebald patterns can be caused by a faulty version of a gene called kit. What we have found is counter intuitive. Previously it was thought that the defective kit gene slowed cells down but instead we've shown that it actually reduces the rate at which they multiply. There are too few pigment cells to populate the whole of the skin and so the animal gets a white belly. In addition to kit, there are many other genes that can create piebald patterns, the mathematical model can explain piebald patterns regardless of the genes involved.''


Story Source:

Materials provided by University of Bath. Note: Content may be edited for style and length.


Journal Reference:

  1. Richard L. Mort, Robert J. H. Ross, Kirsten J. Hainey, Olivia J. Harrison, Margaret A. Keighren, Gabriel Landini, Ruth E. Baker, Kevin J. Painter, Ian J. Jackson, Christian A. Yates. Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model. Nature Communications, 2016; 7: 10288 DOI: 10.1038/NCOMMS10288

Cite This Page:

University of Bath. "How two-tone cats get their patches comes to light in cell study." ScienceDaily. ScienceDaily, 6 January 2016. <www.sciencedaily.com/releases/2016/01/160106091746.htm>.
University of Bath. (2016, January 6). How two-tone cats get their patches comes to light in cell study. ScienceDaily. Retrieved September 30, 2016 from www.sciencedaily.com/releases/2016/01/160106091746.htm
University of Bath. "How two-tone cats get their patches comes to light in cell study." ScienceDaily. www.sciencedaily.com/releases/2016/01/160106091746.htm (accessed September 30, 2016).