Science News
from research organizations

Microbiome associated with severe caries in Canadian First Nations children

Date:
March 18, 2016
Source:
International & American Associations for Dental Research
Summary:
Researchers aimed to determine the caries-associated microbiome among Canadian First Nations children with severe early childhood caries (S-ECC).
Share:
FULL STORY

Today at the 45th Annual Meeting & Exhibition of the American Association for Dental Research, researcher Robert Schroth, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada, will present a study titled "Microbiome Associated With Severe Caries in Canadian First Nations Children."

Researchers aimed to determine the caries-associated microbiome among Canadian First Nations children with severe early childhood caries (S-ECC). Canadian First Nations children < 72 months of age with S-ECC or caries-free were recruited in Winnipeg. Children with S-ECC were recruited on the day of their dental surgery. Caries-free children were recruited from the community. Parents completed a questionnaire on general and dental health, diet, and demographics. Plaque and saliva samples were collected following set protocol. Microbiome analysis was conducted including Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS).

Data analysis included descriptive and bivariate analyses (Chi Square and t tests). A p value ? 0.05 was significant. Thirty children with S-ECC and 20 caries-free controls participated. The mean age was 40.7±11.7 months and 56% were male. There were no significant differences between the groups with respect to sex or age (p=0.20 and p=0.11, respectively). Children with S-ECC were weaned from the bottle at a later age than those caries-free (25.8±12.0 months vs. 17.9±8.9, p=0.28). There was no difference in daily snacking frequency between the groups (p=0.71). Microbiome analyses revealed no new unique pathogens. However, the abundance of S. mutans rDNA relative to total bacterial rDNA was significantly higher in children with S-ECC (5.99%±7.01% vs. 0.21%±0.28%, p<0.05). Meanwhile, compared to caries-free children, those with S-ECC displayed nearly a 3-fold decrease in Streptococcus sanguinis (a competitor of S. mutans), and a 3-fold increase in Veillonella spp (metabolically dependent on S. mutans) relative abundance.

There was an increased abundance of S. mutans, as well as population shifts in oral microbial communities in children with S-ECC. Canadian First Nations children with S-ECC had significantly higher levels of cariogenic microorganisms than their caries-free counterparts, which might explain the high prevalence of S-ECC in Indigenous children.

This is a summary of oral presentation #0876, "Microbiome Associated With Severe Caries in Canadian First Nations Children."


Story Source:

Materials provided by International & American Associations for Dental Research. Note: Content may be edited for style and length.


Cite This Page:

International & American Associations for Dental Research. "Microbiome associated with severe caries in Canadian First Nations children." ScienceDaily. ScienceDaily, 18 March 2016. <www.sciencedaily.com/releases/2016/03/160318085650.htm>.
International & American Associations for Dental Research. (2016, March 18). Microbiome associated with severe caries in Canadian First Nations children. ScienceDaily. Retrieved May 24, 2017 from www.sciencedaily.com/releases/2016/03/160318085650.htm
International & American Associations for Dental Research. "Microbiome associated with severe caries in Canadian First Nations children." ScienceDaily. www.sciencedaily.com/releases/2016/03/160318085650.htm (accessed May 24, 2017).

RELATED STORIES