Science News
from research organizations

How cancer cells spread and squeeze through tiny blood vessels

Date:
June 29, 2016
Source:
American Chemical Society
Summary:
The spread of cancer from a tumor's original location to other parts of the body can play a major role in whether the disease turns deadly. Many steps in this process, called metastasis, remain murky. But now scientists are gaining new insights into how cancer cells might squeeze through and even divide within narrow blood vessels while traveling in the body.
Share:
FULL STORY

The spread of cancer from a tumor's original location to other parts of the body can play a major role in whether the disease turns deadly. Many steps in this process, called metastasis, remain murky. But now scientists are gaining new insights into how cancer cells might squeeze through and even divide within narrow blood vessels while travelling in the body. They report their study using microtubular nanomembranes in the journal ACS Nano.

One thing scientists do know about metastasis is that spreading cancer cells elongate to fit through capillaries -- blood vessels as fine as spider silk. They can get trapped in these skinny passages, but despite becoming misshapen, they seem to still be able to divide and form little colonies of cells before dislodging and moving on. If scientists could better understand this process, they could potentially improve anti-metastatic treatment strategies. But studying it in molecular detail is not possible with conventional analytical techniques. So Wang Xi, Christine K. Schmidt and colleagues used transparent, rolled-up nanofilms to study how cancer cells divide in capillaries.

The researchers trapped live cancer cells in the tubular membranes and, with optical high- and super-resolution microscopy, could see how the cells adapted to the confined environment. Cell structures significantly changed in the nanomembranes, but it appeared that membrane blebbing -- the formation of bulges -- at the cells' tips helped keep genetic material stable, an important requirement for healthy cell division. The researchers say their technique could be a useful tool for further investigating metastatic cancer.


Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. Wang Xi, Christine K. Schmidt, Samuel Sanchez, David H. Gracias, Rafael E. Carazo-Salas, Richard Butler, Nicola Lawrence, Stephen P. Jackson, Oliver G. Schmidt. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes. ACS Nano, 2016; 10 (6): 5835 DOI: 10.1021/acsnano.6b00461

Cite This Page:

American Chemical Society. "How cancer cells spread and squeeze through tiny blood vessels." ScienceDaily. ScienceDaily, 29 June 2016. <www.sciencedaily.com/releases/2016/06/160629135811.htm>.
American Chemical Society. (2016, June 29). How cancer cells spread and squeeze through tiny blood vessels. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2016/06/160629135811.htm
American Chemical Society. "How cancer cells spread and squeeze through tiny blood vessels." ScienceDaily. www.sciencedaily.com/releases/2016/06/160629135811.htm (accessed May 23, 2017).

RELATED STORIES