New! Sign up for our free email newsletter.
Science News
from research organizations

Creating images of minute structures

Date:
November 6, 2017
Source:
University of Erlangen-Nuremberg
Summary:
Scientists gain an insight into the fascinating world of atoms and molecules using x-ray microscopes. Ground-breaking research by physicists has paved the way towards new imaging techniques. The team of scientists have successfully developed and tested a method which is considerably more effective than conventional procedures.
Share:
FULL STORY

Scientists gain an insight into the fascinating world of atoms and molecules using x-ray microscopes. Ground-breaking research by physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), the Deutsches Elektronen Synchrotron (DESY) in Hamburg, and the University of Hamburg has paved the way towards new imaging techniques. The team of scientists have successfully developed and tested a method which is considerably more effective than conventional procedures. The researchers' findings have recently been published in the journal Nature Physics.

Conventional methods researchers use to determine the structure of crystals and minerals are based on the coherent scattering of light. In other words, light waves hit a structure and are deflected, but continue to oscillate without their pattern of crests and troughs being distorted or interrupted in any way. If a sufficient number of these photons can be measured with a detector, a characteristic diffraction pattern is obtained which can be used to derive the pattern of scattered atoms or the crystal structure.

Most light waves, however, are scattered incoherently, that is the wave patterns of the outgoing waves are no longer directly in relation to the incoming waves as the light is reflected from the atoms it touches as fluorescent light. The result is diffuse background light which scientists have until now believed was not suitable for imaging, having a negative effect on the accuracy of the method.

This incoherently scattered light, however, is precisely what has now been used to analyse a structure. At DESY, the researchers successfully created an image of a hexagonal, micrometre sized structure in the shape of a benzene ring. The basic technique behind this procedure is not new. Robert Hanbury Brown and Richard Q. Twiss used incoherent light to determine the diameter of stars as early on as 1956. The team of researchers from Erlangen and Hamburg have now refined this method, using it to analyse microscopic structures.

The innovative method has one decisive advantage. 'The smaller the structures to be imaged, the larger the proportion of incoherently scattered light,' explains the lead author of the study, Raimund Schneider from FAU. 'Whilst this poses coherent imaging increasing problems with intensity, our method actually benefits from it.' The new method has the potential to achieve a significant improvement in analysing structures in the fields of biology and medicine.

The original publication 'Quantum Imaging with incoherently scattered light from a free-electron laser' was published in Nature Physics.


Story Source:

Materials provided by University of Erlangen-Nuremberg. Note: Content may be edited for style and length.


Journal Reference:

  1. Raimund Schneider, Thomas Mehringer, Giuseppe Mercurio, Lukas Wenthaus, Anton Classen, Günter Brenner, Oleg Gorobtsov, Adrian Benz, Daniel Bhatti, Lars Bocklage, Birgit Fischer, Sergey Lazarev, Yuri Obukhov, Kai Schlage, Petr Skopintsev, Jochen Wagner, Felix Waldmann, Svenja Willing, Ivan Zaluzhnyy, Wilfried Wurth, Ivan A. Vartanyants, Ralf Röhlsberger, Joachim von Zanthier. Quantum imaging with incoherently scattered light from a free-electron laser. Nature Physics, 2017; DOI: 10.1038/nphys4301

Cite This Page:

University of Erlangen-Nuremberg. "Creating images of minute structures." ScienceDaily. ScienceDaily, 6 November 2017. <www.sciencedaily.com/releases/2017/11/171106112245.htm>.
University of Erlangen-Nuremberg. (2017, November 6). Creating images of minute structures. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2017/11/171106112245.htm
University of Erlangen-Nuremberg. "Creating images of minute structures." ScienceDaily. www.sciencedaily.com/releases/2017/11/171106112245.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES