New! Sign up for our free email newsletter.
Science News
from research organizations

Folding poisons: How toxins of the bacterium Clostridium difficile get into cells in the gut

Date:
September 11, 2018
Source:
University of Freiburg
Summary:
Clostridium difficile can proliferate when the gut's normal microbiome is killed by antibiotics, leading to inflammation. New research shows how the microbes' poisonous proteins penetrate intestinal cells.
Share:
FULL STORY

Treating bacterial infections with antibiotics often kills intestinal flora, leading to diarrhea and inflammation of the gut. Often it is bacteria known as Clostridium difficile which are responsible; they proliferate when the normal microbiome is killed by antibiotics. A working group headed by Professor Dr. Dr. Klaus Aktories of the Institute of Experimental and Clinical Pharmacology at the University of Freiburg, collaborating with Professor Dr. Andreas Schlosser of the Rudolf Virchow Center in Würzburg, has shown how the microbes' poisonous proteins penetrate intestinal cells. The results of their study are published in the Proceedings of the National Academy of Sciences.

Clostridium difficile produces toxins in the gut which get into cells in the intestinal mucosal surface, disrupting their barrier function. Researchers have long known how these toxins affect cells. They transfer sugar to switch proteins, rendering them inactive. This leads to disintegration and death of the cell. But it was not known how the relatively large proteins in the toxins were able to enter the host cell. It was only known that the bacterial toxins bind with the surface of intestinal cells and enter via tiny pores from blister-like structures in the cytoplasm called vesicles.

As the working group has shown, further up-take of the toxins depends on the protein TRiC. It is responsible for folding proteins -- which occur as long chains of amino acids in the cell -- giving them their three-dimensional structure. The researchers found that TRiC also plays an essential role in folding bacterial toxins, which are transferred through the cell membrane as long chains and, once inside, have to be re-folded. When the researchers blocked TRiC with an inhibitor or switched it off genetically, poisoning of the cell did not occur.

The effect of other bacterial toxins which can transmit sugars is also dependent on TRiC. These latest findings may help researchers find active agents to combat the toxins.


Story Source:

Materials provided by University of Freiburg. Note: Content may be edited for style and length.


Journal Reference:

  1. Marcus Steinemann, Andreas Schlosser, Thomas Jank, Klaus Aktories. The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins likeClostridium difficiletoxins A and B. Proceedings of the National Academy of Sciences, 2018; 201807658 DOI: 10.1073/pnas.1807658115

Cite This Page:

University of Freiburg. "Folding poisons: How toxins of the bacterium Clostridium difficile get into cells in the gut." ScienceDaily. ScienceDaily, 11 September 2018. <www.sciencedaily.com/releases/2018/09/180911142716.htm>.
University of Freiburg. (2018, September 11). Folding poisons: How toxins of the bacterium Clostridium difficile get into cells in the gut. ScienceDaily. Retrieved April 17, 2024 from www.sciencedaily.com/releases/2018/09/180911142716.htm
University of Freiburg. "Folding poisons: How toxins of the bacterium Clostridium difficile get into cells in the gut." ScienceDaily. www.sciencedaily.com/releases/2018/09/180911142716.htm (accessed April 17, 2024).

Explore More

from ScienceDaily

RELATED STORIES