New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Soap bubble

A soap bubble is a very thin film of soap water that forms a hollow sphere with an iridescent surface. Soap bubbles usually last for only a few moments and then burst either on their own or on contact with another object. They are often used as a children's plaything, but their usage in artistic performances shows that they can be fascinating for adults too. Soap bubbles can help to solve complex mathematical problems of space, as they will always find the smallest surface area between points or edges.

A bubble can exist because the surface layer of a liquid (usually water) has a certain surface tension, which causes the layer to behave somewhat like an elastic sheet. However, a bubble made with a pure liquid alone is not stable and a dissolved surfactant such as soap is needed to stabilize a bubble. A common misconception is that soap increases the water's surface tension. Actually soap does the exact opposite, decreasing it to approximately one third the surface tension of pure water. Soap does not strengthen bubbles, it stabilizes them, via an action known as the Marangoni effect. As the soap film stretches, the surface concentration of soap decreases, which causes the surface tension to increase. Thus, soap selectively strengthens the weakest parts of the bubble and tends to prevent them from stretching further.

Related Stories
 


Matter & Energy News

January 26, 2026

Researchers have demonstrated that quantum entanglement can link atoms across space to improve measurement accuracy. By splitting an entangled group of atoms into separate clouds, they were able to measure electromagnetic fields more precisely than ...
Researchers have developed a technique that allows them to carve complex three dimensional nanodevices directly from single crystals. To demonstrate its power, they sculpted microscopic helices from a magnetic material and found that the structures ...
A new building material developed by engineers at Worcester Polytechnic Institute could change how the world builds. Made using an enzyme that turns carbon dioxide into solid minerals, the material cures in hours and locks away carbon instead of ...
Physicists have unveiled a new way to simulate a mysterious form of dark matter that can collide with itself but not with normal matter. This self-interacting dark matter may trigger a dramatic collapse inside dark matter halos, heating and ...
As global energy demand surges—driven by AI-hungry data centers, advanced manufacturing, and electrified transportation—researchers at the National Renewable Energy Laboratory have unveiled a breakthrough that could help squeeze far more power ...
Solid-state batteries could store more energy and charge faster than today’s batteries, but they tend to crack and fail over time. Stanford researchers found that a nanoscale silver treatment can greatly strengthen the battery’s ceramic core. ...
Engineers have created a device that generates incredibly tiny, earthquake-like vibrations on a microchip—and it could transform future electronics. Using a new kind of “phonon laser,” the team ...
Foams were once thought to behave like glass, with bubbles frozen in place at the microscopic level. But new simulations reveal that foam bubbles are always shifting, even while the foam keeps its overall shape. Remarkably, this restless motion ...
Florida State University scientists have engineered a new crystal that forces atomic magnets to swirl into complex, repeating patterns. The effect comes from mixing two nearly identical compounds whose mismatched structures create magnetic tension ...
Scientists in South Korea have discovered a way to make all-solid-state batteries safer and more powerful using inexpensive materials. Instead of adding costly metals, they redesigned the battery’s internal structure to help lithium ions move ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...

Latest Headlines

updated 12:56 pm ET