New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Solubility

Solubility is a property referring to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. The resulting solution is called a saturated solution. Certain substances are soluble in all proportions with a given solvent, such as ethanol in water. This property is known as miscibility.

Under various conditions, the equilibrium solubility can be exceeded to give a so-called supersaturated solution, which is metastable. The solvent is often a solid, which can be a pure substance or a mixture. The species that dissolves, the solute, can be a gas, another liquid, or a solid. Solubilities range widely, from infinitely soluble such as ethanol in water, to poorly soluble, such as silver chloride in water. The term insoluble is often applied to poorly soluble compounds, though strictly speaking there are very few cases where there is absolutely no material dissolved.

The process of dissolving, called dissolution, is relatively straightforward for covalent substances such as ethanol. When ethanol dissolves in water, the ethanol molecules remain intact but form new hydrogen bonds with the water. When, however, an ionic compound such as sodium chloride (NaCl) dissolves in water, the sodium chloride lattice dissociates into separate ions which are solvated (wrapped) with a coating of water molecules. Nonetheless, NaCl is said to dissolve in water, because evaporation of the solvent returns crystalline NaCl.

Related Stories
 


Matter & Energy News

November 20, 2025

New research shows that light’s magnetic field is far more influential than scientists once believed. The team found that this magnetic component significantly affects how light rotates as it passes through certain materials. Their work challenges ...
Operating a new device named the Fusion Z-pinch Experiment 3, or FuZE-3, Zap Energy has now achieved plasmas with electron pressures as high as 830 megapascals (MPa), or 1.6 gigapascals (GPa) total, comparable to the pressures found deep below ...
A nationwide analysis has uncovered how sprawling fossil fuel infrastructure sits surprisingly close to millions of American homes. The research shows that 46.6 million people live within about a mile of wells, refineries, pipelines, storage sites, ...
MIT engineers have created an ultrasonic device that rapidly frees water from materials designed to absorb moisture from the air. Instead of waiting hours for heat to evaporate the trapped water, the system uses high-frequency vibrations to release ...
Researchers created scalable quantum circuits capable of simulating fundamental nuclear physics on more than 100 qubits. These circuits efficiently prepare complex initial states that classical computers cannot handle. The achievement demonstrates a ...
Researchers have found a way to make “dark excitons”—normally invisible quantum states of light—shine dramatically brighter by trapping them inside a tiny gold-nanotube optical cavity. This breakthrough boosts their emission 300,000-fold and ...
Scientists built a tiny clock from single-electron jumps to probe the true energy cost of quantum timekeeping. They discovered that reading the clock’s output requires vastly more energy than the clock uses to function. This measurement process ...
A new dual-light microscope lets researchers observe micro- and nanoscale activity inside living cells without using dyes. The system captures both detailed structures and tiny moving particles at ...
Dark matter may be invisible, but scientists are getting closer to understanding whether it follows the same rules as everything we can see. By comparing how galaxies move through cosmic gravity wells to the depth of those wells, researchers found ...
A new floating droplet electricity generator is redefining how rain can be harvested as a clean power source by using water itself as both structural support and an electrode. This nature-integrated design dramatically reduces weight and cost ...
Hypersonic flight could one day make long-haul travel as quick as a short movie. Researchers are testing how turbulence behaves at extreme speeds, a critical hurdle for designing these aircraft. ...
Researchers engineered “gyromorphs,” a new type of metamaterial that combines liquid-like randomness with large-scale structural patterns to block light from every direction. This innovation solves longstanding limitations in quasicrystal-based ...

Latest Headlines

updated 12:56 pm ET