Featured Research

from universities, journals, and other organizations

NU Professor Works Toward A Permanently Germ-Free Surface: Polymer Glass Coating Capable Of Killing Airborne Bacteria On Contact

Date:
October 18, 2001
Source:
Northeastern University
Summary:
Whose hands were on that doorknob before yours? That handrail, pay phone, or subway pole? Kim Lewis, newly appointed professor of biology at Northeastern University in Boston, has worked with scientists at M.I.T. and Tufts University to ease our germ-fearing minds about this very thing. In their research, they demonstrate that covalent attachment of N-alkylated poly(4-vinylpyridine) (PVP) to glass surfaces can make surfaces permanently lethal to several types of bacteria on contact.

BOSTON, Mass. --– Whose hands were on that doorknob before yours? That handrail, pay phone, or subway pole? Kim Lewis, newly appointed professor of biology at Northeastern University in Boston, has worked with scientists at M.I.T. and Tufts University to ease our germ-fearing minds about this very thing. In their research, they demonstrate that covalent attachment of N-alkylated poly(4-vinylpyridine) (PVP) to glass surfaces can make surfaces permanently lethal to several types of bacteria on contact.

Lewis, former associate professor at Tufts' Biotechnology Center, along with MIT's Joerg C. Tiller, Chun-Jen (Jason) Liao, and Alexander M. Klibanov, have found a fairly narrow range of N-alkylated PVP compositions that allow the polymers to retain their bacteria-killing ability when coated on dry surfaces. These are the first engineered surfaces that have been shown to kill airborne microbes in the absence of any liquid medium.

Previous efforts to design dry bactericidal surfaces were continuously unsuccessful, the researchers hypothesized, because the polymer chains weren't sufficiently long and flexible enough to penetrate bacterial cell walls. Their polymer includes a long "linker" that enables the toxic N-alkylated pyridine groups to cross the bacterial envelope. The researchers found that dry surface-bonded PVP with either no N-alkyl chains or long N-alkyl chains (10 or more carbon units) is not bactericidal. But three- to eight-unit PVP chains, however, have sufficient positive charge (from the cationic pyridine nitrogen) to repel each other and stay flexible and sufficiently hydrophobic to penetrate bacterial cell walls.

Such surfaces kill 94% to more than 99% of bacteria sprayed on them, and because the coating is chemically bonded to the surface, it doesn't come off when touched or washed. The surface treatment is potentially long-lasting and capable of being scaled up to commercial production at moderate cost, being applied as a paint or coating. The goal is to make any common surface capable of killing airborne bacteria.


Story Source:

The above story is based on materials provided by Northeastern University. Note: Materials may be edited for content and length.


Cite This Page:

Northeastern University. "NU Professor Works Toward A Permanently Germ-Free Surface: Polymer Glass Coating Capable Of Killing Airborne Bacteria On Contact." ScienceDaily. ScienceDaily, 18 October 2001. <www.sciencedaily.com/releases/2001/10/011016065805.htm>.
Northeastern University. (2001, October 18). NU Professor Works Toward A Permanently Germ-Free Surface: Polymer Glass Coating Capable Of Killing Airborne Bacteria On Contact. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2001/10/011016065805.htm
Northeastern University. "NU Professor Works Toward A Permanently Germ-Free Surface: Polymer Glass Coating Capable Of Killing Airborne Bacteria On Contact." ScienceDaily. www.sciencedaily.com/releases/2001/10/011016065805.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins