Featured Research

from universities, journals, and other organizations

How Receptors Govern Inflammatory Pain

Date:
December 2, 2004
Source:
Cell Press
Summary:
Researchers have shown in animal studies how receptors on nerve cells can become altered to produce chronic pain triggered by inflammation. They say that their findings could aid in developing new drugs to treat such chronic pain, which is distinct from the relatively short-lived pain from injury, which fades as the injury heals.

Researchers have shown in animal studies how receptors on nerve cells can become altered to produce chronic pain triggered by inflammation. They say that their findings could aid in developing new drugs to treat such chronic pain, which is distinct from the relatively short-lived pain from injury, which fades as the injury heals.

In their experiments, Bettina Hartmann and her colleagues studied receptors called AMPA receptors, which are triggered by the neurotransmitter glutamate. Such receptors are protein switches that nestle in the membranes of nerve cells and, when triggered, induce either short-term or long-term changes in the nerve cells. A short-term change might be the triggering of a single nerve impulse; but AMPA receptors have been implicated in long-lasting changes such as adjusting the strength of nerve cell connections, or synapses, in learning and memory. AMPA receptors regulate nerve cell response by opening to enhance calcium flow into the cell, heightening the cells' sensitivity to producing nerve impulses when triggered.

According to Hartmann and her colleagues, studies of spinal cord tissue showed that AMPA receptors are found in spinal cord regions known to be responsible for pain sensing, or nociception. However, they said, there had been no studies that explored what role the receptors played in whole animals.

To study that role, the researchers genetically altered mice to lack one or another type of key component, or subunit, of the AMPA receptor protein. Knocking out one type of subunit, called GluR-A, would enhance AMPA permeability to calcium; and knocking out the other, called GluR-B, would reduce its permeability. Normally, the relative fraction of AMPA receptors with GluR-A or GluR-B on the surfaces of nerve cells would determine the cell's permeability to calcium.

Importantly, the researchers found that both of the types of deficient mice showed normal response to discomforting stimuli, such as heat. Thus, their pain responses were otherwise normal.

However, when the researchers used chemicals to induced an artificial inflammation in the paws of the deficient mice, they found significant differences in responses between the two mutant mouse strains. The strain with increased permeability of their AMPA channels was significantly more sensitive to heat or mechanical pressure on their inflamed paws than were either the strain of mice with "closed" AMPA channels or the normal mice.

In similar tests, the researchers also found that the altered mice with more permeable AMPA channels showed evidence of greater persisting pain from inflammation, compared with the altered mice with less permeable channels. According to Hartmann and her colleagues, this difference "supports that acute, short-term plasticity at central nociceptive synapses is dependent on AMPA receptors and their composition."

The researchers also cited evidence from other laboratories that AMPA receptors might be involved in pain-related changes in the brain that are "involved in the perception, memory, and emotional modulation of pain."

The researchers concluded that "the present study demonstrates that AMPA receptors are important determinants of pathological nociceptive sensitivity and suggests their potential relevance in the therapeutic approaches toward the prevention and treatment of chronic inflammatory pain.

Bettina Hartmann, Seifollah Ahmadi, Paul A. Heppenstall, Gary R. Lewin, Claus Schott, Thilo Borchardt, Peter H. Seeburg, Hanns Ulrich Zeilhofer, Rolf Sprengel, and Rohini Kuner: "The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain"

Publishing in Neuron, Volume 44, Number 4, November 18, 2004, pages 637–650. http://www.neuron.org.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "How Receptors Govern Inflammatory Pain." ScienceDaily. ScienceDaily, 2 December 2004. <www.sciencedaily.com/releases/2004/11/041123163648.htm>.
Cell Press. (2004, December 2). How Receptors Govern Inflammatory Pain. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/11/041123163648.htm
Cell Press. "How Receptors Govern Inflammatory Pain." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123163648.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins