Featured Research

from universities, journals, and other organizations

Unexpressed But Indispensable -- The DNA Sequences That Control Development

Date:
February 9, 2005
Source:
Public Library Of Science
Summary:
Amidst the hoopla over the exact number of genes we have in our genome—more than a fruitfly, fewer than a rice plant—a more fundamental genetic truth has often been obscured. The expression of 20,000–30,000 genes is under the control of an uncounted host of non-coding sequences, which bind transcription factors and thereby regulate when and where genes are expressed.

Highly conserved vertebrate non-coding elements direct tissue-specific reporter gene expression.
Credit: Image s courtesy of Public Library Of Science

Amidst the hoopla over the exact number of genes we have in our genome—more than a fruitfly, fewer than a rice plant—a more fundamental genetic truth has often been obscured. The expression of 20,000–30,000 genes is under the control of an uncounted host of non-coding sequences, which bind transcription factors and thereby regulate when and where genes are expressed. Unlike coding sequences, whose signatures are easy to spot, the characteristic features of non-coding regulatory elements are largely unknown, making their discovery by simple sequence analysis difficult. In this issue, Greg Elgar and colleagues attack this problem by comparing the non-coding sequences of the human and the pufferfish.

Related Articles


Since the last common ancestor of these two species existed 450 million years ago, the authors reasoned that non-coding sequences conserved between them are likely to be fundamental to vertebrate development. Through sequence alignment with increasingly strict criteria, they identified 1,373 highly conserved non-coding elements (CNEs), with an average length of about 200 base pairs. The average sequence match is 84%: not perfect, but much higher than for coding regions shared by humans and pufferfish. A quick check showed that virtually all the sequences also occurred in rodents, chickens, and zebrafish, but not in the nematode, fruitfly, or even the sea squirt, a primitive non-vertebrate chordate.

CNEs are not spread uniformly throughout the genome. Instead, they are bunched together in fewer than 200 clusters, most of them in close proximity to genes implicated in transcriptional regulation or development. This clustering of CNEs suggests they may not only attract transcription factors, but may also influence the local topology of the DNA, thereby controlling access to their associated gene. Several clusters also appear in regions without any known genes—the identification of these clusters might lead to the discovery of new developmentally significant genes.

While “in silico” discoveries such as this can be the jumping-off point for whole new areas of investigation, their validity must be tested “in aqua,” in the wet biology of real organisms. For this Elgar and colleagues chose the zebrafish, because its transparent embryo is ideal for observing developmental events. They injected individual CNEs into embryos, along with a green fluorescent protein (GFP) reporter. By day two of development, 23 out of 25 CNEs injected had upregulated GFP expression, indicating interaction of these sequences with endogenous transcription factors. Different CNEs caused different regional patterns of expression, in keeping with their presumed roles in distinct developmental processes.

The discovery of these developmentally important sequences opens several avenues of new research. For example, analyzing the sequence and location of these CNEs may help point the way to other non-coding elements that remain undiscovered. It is also likely that mutations in these critical sequences cause human diseases. Studying how such mutations drive development astray may lead to better understanding not only of these diseases, which are likely to be rare, but also of normal human development.


Story Source:

The above story is based on materials provided by Public Library Of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library Of Science. "Unexpressed But Indispensable -- The DNA Sequences That Control Development." ScienceDaily. ScienceDaily, 9 February 2005. <www.sciencedaily.com/releases/2005/02/050201190548.htm>.
Public Library Of Science. (2005, February 9). Unexpressed But Indispensable -- The DNA Sequences That Control Development. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2005/02/050201190548.htm
Public Library Of Science. "Unexpressed But Indispensable -- The DNA Sequences That Control Development." ScienceDaily. www.sciencedaily.com/releases/2005/02/050201190548.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins