Featured Research

from universities, journals, and other organizations

Embryonic Stem Cells Treated With Growth Factor Reverse Hemophilia In Mice: UNC Researchers

Date:
March 1, 2005
Source:
University Of North Carolina At Chapel Hill
Summary:
University of North Carolina at Chapel Hill researchers have made a discovery that may have implications for the treatment of liver-based genetic defects such as hemophilia A and B in humans.

CHAPEL HILL -- University of North Carolina at Chapel Hill researchers have made a discovery that may have implications for the treatment of liver-based genetic defects such as hemophilia A and B in humans.

Mouse embryonic stem cells treated in culture with a growth factor and then injected into the liver reverse a form of hemophilia in mice analogous to hemophilia B in humans, the new study shows. A report of the study appears in the journal Proceedings of the National Academy of Sciences today (Feb. 15).

The genetically altered mice lack the clotting substance factor IX, which in humans results in the hereditary bleeding disorder known as hemophilia B. This disease, much less common than hemophilia A, affects roughly one of every 35,000 people, primarily males.

Although embryonic stem, or ES, cells can differentiate into most cell types in the body, numerous problems have arisen in translating their potential into therapeutic strategies, the UNC School of Medicine study authors reported.

These problems include poor engraftment, limited function, rejection of engrafted cells by the immune system and teratomas, tumors involving a mixture of tissue not normally found at that site.

The new study used a line of mouse ES cells developed in the laboratory of senior co-author Dr. Oliver Smithies, Excellence professor of pathology and laboratory medicine at UNC.

A member of the National Academy of Sciences, Smithies has won many honors for gene targeting, a technique he pioneered. This technique allows for the development of mice with specific genetic mutations that mimic human illnesses such as hemophilia. In 2001, Smithies received the Albert Lasker Award for Basic Medical Research, often called "America’s Nobel."

In the study, ES cells were treated with fibroblast growth factor for seven days prior to injection. As expected, this resulted in ES cells differentiating into early endoderm like precursors, which the researchers named "putative endoderm precursors," or PEPs. Endoderm refers to the inner layer of early embryonic cells that develops into the digestive and respiratory systems.

"Not only do ES cells differentiate into PEPs, they also engraft, persist, differentiate further and then function following injection, resulting in the persistent production of factor IX protein that can only come from a hepatocyte (liver cell) and hemophilia reversal," said study lead author Dr. Jeffrey H. Fair, associate professor of surgery and division chief of abdominal transplant surgery.

Moreover, he said, the PEP cells robustly engraft within the liver and were not recognized by the immune system as foreign.

"Within a few weeks, PEPs became hepatocytes," Fair added. "They went from something that is a very early grandparent of the hepatocyte to becoming hepatocytes. After 115 days, nearly four months after injection, mice still produced factor IX without immune suppression. This occurred even in mice that were a complete immunologic tissue mismatch to the PEPs. In addition, the incidence of teratomas was low."

The researchers believe this study demonstrates the power of multidisciplinary collaboration, said co-lead author Dr. Bruce A. Cairns, assistant professor of surgery and director of research in the N.C. Jaycee Burn Center. "This approach may not only be beneficial, but required in order to solve complex problems such as these in medicine."

Although a number of questions need to be answered, this work has great potential for future applications, not only as a novel therapeutic possibility for hemophilia but also for other genetic or acquired diseases of the liver, said senior co-author Dr. Jeffery A. Frelinger, Kenan professor and chairman of microbiology and immunology.

"The data published in this study shows that embryonic stem cells partially differentiated, are able to remain in the liver and be functional without apparent immunological rejection. This transforms them into possible candidates for cellular transplantation into the liver."

Along with Fair, Cairns, Smithies and Frelinger, co-authors from the department of surgery are Dr. Michael A. LaPaglia, Dr. Montserrat Caballero, Dr. Anthony A. Meyer (chairman) and W. Andrew Pleasant. From the department of pathology and laboratory medicine are Drs. Seigo Hatada and Hyung-suk Kim. From the College of Arts and Sciences’ department of biology are Drs. Tong Gui and Darrel W. Stafford; and from the department of genetics, Dr. Larysa Pevny.

The research was supported by grants from the National Institutes of Health and the N.C. Jaycee Burn Center.


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Embryonic Stem Cells Treated With Growth Factor Reverse Hemophilia In Mice: UNC Researchers." ScienceDaily. ScienceDaily, 1 March 2005. <www.sciencedaily.com/releases/2005/02/050222194021.htm>.
University Of North Carolina At Chapel Hill. (2005, March 1). Embryonic Stem Cells Treated With Growth Factor Reverse Hemophilia In Mice: UNC Researchers. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2005/02/050222194021.htm
University Of North Carolina At Chapel Hill. "Embryonic Stem Cells Treated With Growth Factor Reverse Hemophilia In Mice: UNC Researchers." ScienceDaily. www.sciencedaily.com/releases/2005/02/050222194021.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins