Featured Research

from universities, journals, and other organizations

International Research Team Announces Finished Rice Genome

Date:
August 11, 2005
Source:
The Institute for Genomic Research
Summary:
An international research team has sequenced the complete rice genome. Scientists at The Institute for Genomic Research (TIGR), a contributor to the project, say the finished rice genome holds some surprises--and new tools to improve crops. Over the next 20 years, world rice production must increase by a projected 30% to feed the earth's growing population. This finished sequence will provide an indispensable roadmap to agricultural researchers using both biotechnology and conventional breeding to develop hardier rice varieties.

Rice feeds more than half of the world's human population. Estimates indicate that the agricultural yield of rice will need to be increased by some 30% over the next two decades to meet projected increased demands. In the August 11 issue of the journal Nature, members of a 10-nation International Rice Genome Sequencing Project (IRGSP) report a highly accurate or "finished" map-based DNA sequence of the entire rice genome. The completed rice genome sequence, which reveals some 37,500 genes on the 12 chromosomes of rice, provides the raw material for many studies aimed at improving the agricultural yield of the world's most important food source.
Credit: Image courtesy of Cold Spring Harbor Laboratory

Rockville, MD -- Every year, the world consumes over 880 billion pounds of rice, which feeds half the population. Those tiny grains add up. So maybe it's no surprise that this important food crop turns out to have more genes than humans.

It's certainly not to researchers at The Institute for Genomic Research (TIGR), who have been sequencing the first food crop genome as part of an international consortium for the last six years. The completed sequence, published in the August 11 issue of Nature, unveils a genome consisting of roughly 400 million DNA bases holding 37,544 genes on rice's 12 chromosomes.

"Rice is a critically important crop, and this finished sequence represents a major milestone," said Robin Buell, lead investigator for TIGR's portion of the project. "We know the scientific community can use these data to develop new varieties of rice that deliver increased yields and grow in harsher conditions."

Over the next 20 years, world rice production must increase by a projected 30% to feed the earth's growing population. This finished sequence will provide an indispensable roadmap to agricultural researchers using both biotechnology and conventional breeding to develop hardier rice varieties. The genetic map will greatly speed their hunt for genes that increase yield, protect against disease and pests, or provide drought-resistance in rice and other cereal crops. Rice is genetically similar to maize, wheat, barley, rye, sorghum, and sugarcane.

"Rice is the Rosetta Stone for crop genomes," Buell says. "We can use the rice genome as a base for genomic studies of cereals." She adds that rice has a considerably smaller genome than maize and wheat, making it a better candidate for sequencing. Luckily, though, the rice genome is largely co-linear with other cereal genomes. In other words, similar genes in the other plant species should pop up in roughly the same spots as their rice counterparts. With the finished sequence, rice researchers gain a kind of genetic GPS, while other cereal researchers inherit a hand-drawn map with some important landmarks.

TIGR researchers sequenced more than 10% of the genome of the temperate subspecies of rice, Oryza sativa subspecies japonica, which is cultivated mainly in Japan, Korea, and the U.S. Their effort was part of the International Rice Genome Sequencing Project (IRGSP), which began in 1998 and pooled the resources of groups from ten nations, including Japan, China, India, Thailand, Taiwan, Brazil, France, Canada, the United Kingdom, and the United States. Japan leads the IRGSP.

The newly complete rice genome builds upon earlier draft sequences published by private companies Monsanto and Syngenta. In what Buell calls a "nice model of a public-private partnership," these companies donated their genome sequences to the IRGSP, saving the public consortium both time and money.

"Much as the Human Genome Project has revolutionized biology, the rice genome promises to inspire new cereal crop research," remarks TIGR President Claire Fraser. "This is a major step forward for agriculture."

Already, in fact, the finished rice genome is accelerating discovery. Scientists have used the finished sequence to identify genes that control fundamental processes, such as flowering. Rice's similarity to barley also has helped researchers identify genes responsible for resistance to barley powdery mildew and stem rust, two major crop diseases.

In the current study, researchers compared rice to the only other fully sequenced plant genome: Arabidopsis thaliana, a leafy plant that is a popular laboratory model. While 90% of Arabidopsis proteins also occur in rice, only 71% of rice's proteins also occur in Arabidopsis. That, says Buell, suggests that rice may hold many rice-specific or cereal-specific genes.

Along with TIGR, other U.S. groups involved in sequencing the genome included Cold Spring Harbor Laboratory, the University of Arizona, Rutgers University, Washington University in St. Louis, and the University of Wisconsin-Madison. Major funding for TIGR's portion of the project came from the U.S. Department of Energy, the National Science Foundation, and the U.S. Department of Agriculture's Cooperative State Research, Education, and Extension Service.

The rice project is an important part of TIGR's plant genomics program, which includes other major research projects involving maize, potato, and Arabidopsis. TIGR is also conducting research involving pine, barley, banana, and plant pathogens. Work on rice at TIGR continues with a four-year project to annotate the genome--identifying its features, assigning known information to each gene, and creating comparative line-ups with other plant species. The finished rice genome is available at www.tigr.org/tdb/e2k1/osa1/.

###

The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.


Story Source:

The above story is based on materials provided by The Institute for Genomic Research. Note: Materials may be edited for content and length.


Cite This Page:

The Institute for Genomic Research. "International Research Team Announces Finished Rice Genome." ScienceDaily. ScienceDaily, 11 August 2005. <www.sciencedaily.com/releases/2005/08/050810134450.htm>.
The Institute for Genomic Research. (2005, August 11). International Research Team Announces Finished Rice Genome. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/08/050810134450.htm
The Institute for Genomic Research. "International Research Team Announces Finished Rice Genome." ScienceDaily. www.sciencedaily.com/releases/2005/08/050810134450.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins