Featured Research

from universities, journals, and other organizations

Cellular Power Plants Also Fend Off Viruses

August 26, 2005
Howard Hughes Medical Institute
Howard Hughes Medical Institute researchers have discovered a surprise lurking inside mitochondria, the power plants that are present in every cell. It turns out that these powerhouses also contain a protein that triggers the immune system to attack viral invaders.

Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS.
Credit: Image s courtesy of Zhijian 'James' Chen, HHMI at UT Southwestern Medical Center

Researchers have discovered a surprise lurking insidemitochondria, the power plants that are present in every cell. It turnsout that these powerhouses also contain a protein that triggers theimmune system to attack viral invaders.

Related Articles

According to theresearchers, the new role makes perfect biological and evolutionarysense because it fits well with another function of mitochondria asexecutioners of a biochemical cascade that causes programmed celldeath, or apoptosis.

“This is the first protein known to beinvolved in the immune response that is found in mitochondria,” saidZhijian `James' Chen, a Howard Hughes Medical Institute investigator atthe University of Texas Southwestern Medical Center. Chen and hiscolleagues reported the discovery on August 25, 2005, in an immediateearly publication of the journal Cell.

In their studies, Chen andhis colleagues were seeking a regulatory molecule that would provide amissing link in the activation of two important triggers of the innateimmune system — NF-kB and IRF3. Somehow, these molecules are activatedin response to a receptor molecule, called RIG-I, which detects viralgenetic material. RIG-I binds to the RNA of viruses such as theinfluenza virus, hepatitis C virus, West Nile virus and SARS virus.

Theresearchers knew the molecule they were seeking was present in abiochemical pathway somewhere between RIG-I and other “downstream”regulatory molecules. They initiated a search for this missing moleculeby searching for proteins in the cell that contain a characteristicmolecular domain, called a CARD domain, which mediates interactionsbetween different regulatory proteins. Their search yielded a protein,which they called MAVS for mitochondrial antiviral signaling.

Theirexperiments revealed that MAVS activated NF-kB and IRF3 in cellcultures. They also found that in order for MAVS to function, itrequires both the CARD domain and another domain that anchors it to themitochondrial membrane. Studies using fluorescent tracers revealed thatMAVS was present in the mitochondria of cells. And when the researchersaltered the MAVS molecule in such a way that it prevented MAVS fromattaching to mitochondria, the molecule did not function properly.

Theresearchers demonstrated the importance of MAVS in immune responses byshowing that cells without MAVS were vulnerable to viral infection;while those with excess MAVS were resistant to such infections.

Chenspeculated that the mitochondria might have evolved into immunesentinels because of their location near internal cell membranes whereviral replication takes place. “By having MAVS in the mitochondrialmembrane, it provides a strategic position for cells to sense thepresence of viruses, especially viral replication,” said Chen.

“Inaddition, MAVS is unique in that it has both a mitochondrial targetingsequence, as well as a CARD domain sequence,” said Chen. “CARD domainproteins are known to be involved in apoptosis, and the mitochondriaare also known to be involved in apoptosis. So, while at this pointthis is still pure speculation, but perhaps combining these two domainsin one protein, MAVS, might allow the cells to integrate signalssomehow and coordinate apoptotic responses or immune responses,depending on the type of viral infection.” Apoptosis is triggered whena cell is no longer needed during development or is damaged beyondrepair. It serves to protect the body from the accumulation of damagedor malfunctioning cells.

Chen said that the newly discoveredimmunological service rendered to the cell by mitochondria makes goodbiological and evolutionary sense. “Evolutionarily, it is believed thatmitochondria originated from ancient bacteria, which formed a symbioticrelationship with eukaryotic cells,” said Chen. “For symbiosis toevolve, the bacteria and the host must be beneficial to one another.Mitochondria have long been known to serve the major function ofproducing chemical energy for the cell, as well as to sense damage andtrigger apoptosis. Now, I think our discovery reveals another importantfunction of the mitochondria, and that is in immunity,” he said.

Understandinghow boosting MAVS function causes cells to resist viral infection couldhave important clinical implications, said Chen. “Treatments thatenhance the activity of MAVS may prove to be useful in boostingimmunity against viruses,” he said. “Furthermore, we suspect that MAVSmight be a prime target for some viruses that can evade immunesurveillance. If those suspicions prove out, then treatments thatcounteract this evasion could provide therapeutic benefits,” he said.Chen also speculated that subtle variations in the MAVS protein mightexplain why people may respond differently when infected with the samevirus.

Chen and his colleagues are now exploring such questions,as well as teasing out further molecular details of the signalingmechanism by which MAVS triggers the immune system. “Over the longterm, we would like to understand the host-viral interactions thatfunction through MAVS, and how MAVS gives the cell immunity to virusesand how viruses try to evade this function of MAVS. We would like toexploit these findings to develop more effective antiviral strategies.”

Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.

Cite This Page:

Howard Hughes Medical Institute. "Cellular Power Plants Also Fend Off Viruses." ScienceDaily. ScienceDaily, 26 August 2005. <www.sciencedaily.com/releases/2005/08/050826075917.htm>.
Howard Hughes Medical Institute. (2005, August 26). Cellular Power Plants Also Fend Off Viruses. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2005/08/050826075917.htm
Howard Hughes Medical Institute. "Cellular Power Plants Also Fend Off Viruses." ScienceDaily. www.sciencedaily.com/releases/2005/08/050826075917.htm (accessed April 21, 2015).

Share This

More From ScienceDaily

More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Blue Bell Recalls All Products

Blue Bell Recalls All Products

AP (Apr. 21, 2015) Blue Bell Creameries voluntary recalled for all of its products after two samples of chocolate chip cookie dough ice cream tested positive for listeria, a potentially deadly bacteria. Blue Bell&apos;s President and CEO issued a video statement. (April 21) Video provided by AP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins