Featured Research

from universities, journals, and other organizations

Mining For Gems In The Fungal Genome

Date:
January 24, 2006
Source:
University of Wisconsin-Madison
Summary:
Ever since penicillin, a byproduct of a fungal mold, was discovered in 1929, scientists have scrutinized fungi for other breakthrough drugs. As reported Jan. 20 in the Journal of Chemistry and Biology, a team led by a University of Wisconsin-Madison researcher has developed a new method that may speed the ongoing quest for medically useful compounds in fungi.

Ever since penicillin, a byproduct of a fungal mold, was discovered in 1929, scientists have scrutinized fungi for other breakthrough drugs. As reported Jan. 20 in the Journal of Chemistry and Biology, a team led by a University of Wisconsin-Madison researcher has developed a new method that may speed the ongoing quest for medically useful compounds in fungi.

By manipulating a single fungal protein, the team, led by professor of plant pathology and medical microbiology Nancy Keller, pinpointed the genes responsible for creating dozens of secondary metabolites, a class of compounds that make good drug candidates. Already, analysis of one subset of these genes has revealed that they encode proteins required to produce an anti-tumor agent.

"We now have a new tool we can use to find secondary metabolites that are of pharmaceutical interest," says Keller. Although the team worked on a widely studied fungus, Aspergillus nidulans, the method can be used to find secondary metabolites in many other fungal species.

While primary metabolites are essential compounds that aid basic growth and reproduction in fungi, secondary metabolites are not required for life. "Secondary metabolites are bioactive compounds that are only produced at select times during the life cycle of the organism," explains Keller, noting that the compounds can help fungi survive various environmental stressors.

Some secondary metabolites have powerful heath effects in humans, such as penicillin, which certain fungi produce in the presence of bacteria. Fungi are also natural producers of antiviral agents, antifungals, other antibacterials, immunosuppressants and the popular cholesterol-lowering drug lovastatin.

Earlier methods to find secondary metabolites located just one compound at a time, and sometimes required prior knowledge about the compound of interest. Even after the genetic sequence of Aspergillus nidulans was completed in 2003, the search for secondary metabolites in that species continued. Although scientists were able to pinpoint the locations of genes believed to be involved in the production of secondary metabolites by pouring over the sequence data, the actual activity of the genes and their gene products still needed to be confirmed.

The method developed by Keller and her colleagues solves this problem and promises to broaden the search for medically useful agents by taking a powerful, genome-wide approach. Their technique is called "genomic mining" because of its robust ability to dig through an entire fungal genome to locate nearly all the hidden gems-the actively-produced secondary metabolites-at once.

The key to Keller's approach lies in a single fungal protein called LaeA. A few years ago, her team discovered that the presence of LaeA is required to turn on the genes that manufacture secondary metabolites in Aspergillus nidulans. "LaeA controls the production of secondary metabolites," says Keller.

For some as-yet unknown biological reason, all the genes required for the production of any given secondary metabolite-usually between three and two dozen genes-are located right next to each other along the chromosome in a gene cluster. These groups of genes stand out in certain scientific analyses, making secondary metabolite gene clusters easy to spot. Keller capitalized on these facts to find actively-produced secondary metabolites.

In one experiment, Jin Woo Bok, a research scientist in Keller's lab and co-author on the paper, deleted the LaeA gene in Aspergillus nidulans. Using a device called a microarray, the research team measured the activity of every gene in the LaeA-free mutant. "We looked at the entire 10,000 genes in this fungus," says Keller.

Keller's team searched the genome for groups of contiguous genes that were inactive in the mutant. They knew these were very likely to be gene clusters involved in the production of secondary metabolites.

In a parallel experiment, Bok designed a fungal strain that produced extra amounts of LaeA. This time, the team searched for groups of over-active genes, which they knew were likely secondary metabolite gene clusters.

The team's new approach located 40 active gene clusters; previously, fewer than ten secondary metabolites were known in this widely studied fungal species.

The newly discovered secondary metabolite gene clusters are already beginning to yield potentially useful medical agents. The team found an anti-tumor agent never before seen in Aspergillus nidulans. "It's just one of many [secondary metabolites to discover]," says Keller. "It's just the tip of the iceburg."

Thirty or so secondary metabolites await analysis in Aspergillus nidulans alone. Additionally, scientists suspect LaeA may play a similar role in all Aspergillus species, meaning there are over 180 fungi that can be mined using this technique. Keller also believes the mining strategy might work outside the Aspergillus genus with some modifications.

"This is really exciting," says Keller. "It's a method to find new metabolites, some of which we hope to be important ones."

###

In addition to Keller and Bok, other members of the research team include Jeremy D. Glasner at UW-Madison; Lori A. Maggio-Hall, formerly of Keller's lab but now at DuPont; Dirk Hoffmeister at the Pharmazeutische Biologie und Biotechnolgie in Freiburg, Germany; and Renato Murillo at Escuela de Quimica y CIPRONA in San Jose, Costa Rica. The work was supported financially by the National Science Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Mining For Gems In The Fungal Genome." ScienceDaily. ScienceDaily, 24 January 2006. <www.sciencedaily.com/releases/2006/01/060123163022.htm>.
University of Wisconsin-Madison. (2006, January 24). Mining For Gems In The Fungal Genome. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2006/01/060123163022.htm
University of Wisconsin-Madison. "Mining For Gems In The Fungal Genome." ScienceDaily. www.sciencedaily.com/releases/2006/01/060123163022.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

AP (Oct. 17, 2014) Two white lion cubs were born in Belgrade zoo three weeks ago. White lions are a rare mutation of a species found in South Africa and some cultures consider them divine. (Oct. 17) Video provided by AP
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
Sweet Times for Hard Cider Makers

Sweet Times for Hard Cider Makers

AP (Oct. 16, 2014) With hard cider making a hardcore comeback across the country, craft makers are trying to keep up with demand and apple growers are tapping a juicy new revenue stream. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Meet Garfi the Angry Cat

Meet Garfi the Angry Cat

Buzz60 (Oct. 16, 2014) Garfi is one frowny, feisty feline - downright angry! Ko Im (@koimtv) introduces us to the latest animal celebrity taking over the Internet. You can follow more of Garfi's adventures on Twitter (@MeetGarfi) and Facebook (Garfi). Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins