Featured Research

from universities, journals, and other organizations

How Bacteria Can Escape Destruction: Scientists Discover Mechanism Used To Pump Out Drugs

Date:
January 2, 2007
Source:
Public Library of Science
Summary:
Bacterial resistance to antibiotics is a major challenge for the current treatment of infectious diseases. One way bacteria can escape destruction is by pumping out administered drugs through specific transporter proteins that span the cell membrane, such as AcrB.

In a new study published online in the open access journal PLoS Biology, Gaby Sennhauser, Marcus Gruetter, and colleagues use structural biology techniques to probe the molecular mechanisms of the major drug efflux pump in E. coli AcrB.

Related Articles


Bacterial resistance to antibiotics is a major challenge for the current treatment of infectious diseases. One way bacteria can escape destruction is by pumping out administered drugs through specific transporter proteins that span the cell membrane, such as AcrB.

Making use of designer proteins that bind to and stabilize proteins of interest, the researchers were able to obtain better resolution structural data for the AcrB complex. After selecting for designed ankyrin repeat proteins (DARPins) that inhibit this pump, Sennhauser and colleagues solved the crystal structure of the DARPin inhibitor in complex with AcrB. They were able to confirm that the AcrB pump is split into three subunits, each of which exhibit distinctly different conformations.

Each subunit has a differently shaped substrate transport channel; these variable channels provide unique snapshots of the different phases employed by AcrB during transport of a substrate. The structure also offers an explanation for how substrate export is structurally coupled to simultaneous proton import--thus significantly improving our understanding of the mechanism of AcrB. This is the first report of the selection and co-crystallization of a DARPin with a membrane protein, which demonstrates not only DARPins' potential as inhibitors, but also as tools for the structural investigation of integral membrane proteins.

Citation: Sennhauser G, Amstutz P, Briand C, Storchenegger O, Gruetter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5(1): e7. doi:10.1371/journal.pbio.0050007.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "How Bacteria Can Escape Destruction: Scientists Discover Mechanism Used To Pump Out Drugs." ScienceDaily. ScienceDaily, 2 January 2007. <www.sciencedaily.com/releases/2006/12/061226095406.htm>.
Public Library of Science. (2007, January 2). How Bacteria Can Escape Destruction: Scientists Discover Mechanism Used To Pump Out Drugs. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/12/061226095406.htm
Public Library of Science. "How Bacteria Can Escape Destruction: Scientists Discover Mechanism Used To Pump Out Drugs." ScienceDaily. www.sciencedaily.com/releases/2006/12/061226095406.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins