Featured Research

from universities, journals, and other organizations

Researchers Discover Master Metabolism Regulator With Profound Effect On Fat Metabolism

Date:
February 8, 2007
Source:
Penn State
Summary:
Researchers have discovered an enzyme that has an unexpectedly profound impact on fat metabolism. The enzyme is a master regulator that controls metabolic responses to a deficiency of essential amino acids in the diet. The research could lead to treatments for obesity and malnutrition and to preventions for type 2 diabetes and heart attacks.

Normal mice fed a diet deficient in leucine do not accumulate fat in their liver (left panel) whereas mutant mice that lack the GCN2 enzyme develop a massive accumulation of fat (severe hepatic steatosis), as seen in the right panel (red droplets).
Credit: Douglas Cavener lab, Penn State

Two biologists at Penn State have discovered a master regulator that controls metabolic responses to a deficiency of essential amino acids in the diet. They also discovered that this regulatory substance, an enzyme named GCN2 eIF2alpha kinase, has an unexpectedly profound impact on fat metabolism. "Some results of our experiments suggest interventions that might help treat obesity, prevent Type II diabetes and heart attacks, or ameliorate protein malnutrition," said Douglas Cavener, professor and head of the Department of Biology, who led the research along with Feifan Guo, a research assistant professor. Their research will appear in the 7 February 2007 issue of the scientific journal Cell Metabolism.

Related Articles


Organisms adapt metabolically to episodes of malnutrition and starvation by shutting down the synthesis of new proteins and fats and by using stores of these nutrients from muscle, fat, and the liver in order to continue vital functions. Cavener and Guo found that the removal of a single amino acid, leucine, from the diet is sufficient to provoke a starvation response that affects fat metabolism. "These findings are important for treating two major problems in the world," Cavener says. "The starvation response we discovered can repress fat synthesis and induce the body to consume virtually all of its stored fat within a few weeks of leucine deprivation. Because this response causes a striking loss of fatty tissue, we may be able to formulate a powerful new treatment for obesity."

The second problem is not excess food intake but insufficient protein intake, which plagues the populations of the poorer nations of Asia and Africa. The Food and Agriculture Organization of the United Nations estimates that 850 million people were malnourished between 1999 and 2005.[1] Those who eat a diet with sufficient calories that is lacking in an essential amino acid may suffer from stunted growth, developmental disorders, or even death. On the other hand, obesity is reaching near-epidemic proportions in wealthier nations. According to the Centers for Disease Control, 30 percent of U.S. adults over the age of 20 are obese.[2]

Rather than working with cells in culture, Guo and Cavener examined metabolic processes in a special strain of mice that lacks the GCN2 kinase and compared them with those of normal mice. "Organisms are remarkably sensitive to dietary intake," Cavener says. "Being deprived of even one essential amino acid is enough for the GCN2 kinase to switch the metabolism into an emergency mode. Despite the fact that these mice are consuming normal amounts of carbohydrates and fats, they rapidly shut down fat synthesis in the liver and mobilize their stored fat deposits. Their bodies are literally tricked into a starvation mode."

The experiments conducted by Guo and Cavener had striking and unexpected results. After 17 days of a leucine-deficient diet, the normal mice lost 48 percent of their liver mass and 97 percent of the adipose or fatty tissue from their abdomens. This response is very similar to what happens during starvation. In contrast, the mice without the GCN2 kinase kept a steady liver mass and lost only 69 percent of the adipose tissue on their abdomens.

One of the especially encouraging aspects of the research by Guo and Cavener was the short time frame in which dramatic changes could be induced. Even after only 7 days of leucine deprivation, the normal mice lost 50 percent of their fatty tissue. They also produced fewer lipids (fats) and showed a small drop in serum triglyceride levels. The mice lacking the GCN2 kinase did not lose as much fat as the normal mice did and, in addition, they developed very pale, fatty livers with unusually high levels of stored triglycerides because they continued to synthesize fatty acids. The remarkable rapidity of the weight change in the normal mice occurred because the repressed synthesis of new fats was coupled with the depletion of stored fats in the body.

These findings about the crucial regulatory role of GCN2 kinase in the metabolism have major implications for the treatment or prevention of obesity, which is associated with increased risk for heart disease, diabetes, hypertension, and osteoarthritis. "Most of all," Cavener says, "we hope to be able to devise dietary interventions that will significantly improve the health of millions of children all over the world who suffer from amino acid deprivation associated with protein malnutrition."

The research was funded by the National Institutes of Health and the Pennsylvania Department of Health.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Researchers Discover Master Metabolism Regulator With Profound Effect On Fat Metabolism." ScienceDaily. ScienceDaily, 8 February 2007. <www.sciencedaily.com/releases/2007/02/070206132121.htm>.
Penn State. (2007, February 8). Researchers Discover Master Metabolism Regulator With Profound Effect On Fat Metabolism. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/02/070206132121.htm
Penn State. "Researchers Discover Master Metabolism Regulator With Profound Effect On Fat Metabolism." ScienceDaily. www.sciencedaily.com/releases/2007/02/070206132121.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins