Featured Research

from universities, journals, and other organizations

An Architectural Plan Of The Cell

Date:
March 15, 2007
Source:
European Molecular Biology Laboratory
Summary:
Researchers at the European Molecular Biology Laboratory (EMBL) and the University of Colorado have now obtained the first 3-D visualization of a complete eukaryotic cell at a resolution high enough to resolve the cytoskeleton's precise architectural plan in fission yeast.

The electron tomogram of a complete yeast cell reveals the cellular architecture. It shows plasma membrane, microtubules and light vacuoles [green], nucleus, dark vacuoles and dark vesicles [gold], mitochondria and large dark vesicles [blue] and light vesicles [pink].
Credit: Johanna Höög

Like our body every cell has a skeleton that provides it with a shape, confers rigidity and protects its fragile inner workings. The cytoskeleton is built of long protein filaments that assemble into networks whose overall architecture and fine detail can only be revealed with high resolution electron microscopy images.

Researchers at the European Molecular Biology Laboratory [EMBL] and the University of Colorado have now obtained the first 3D visualisation of a complete eukaryotic cell at a resolution high enough to resolve the cytoskeleton's precise architectural plan in fission yeast. The image of this unicellular organism will be published in this week's issue of the journal Developmental Cell and reveals remarkable insights into the fine structure of the cytoskeleton as well as its interactions with other parts of the cell.

A key component of the cytoskeleton are long, tube-like filaments called microtubules. They are dynamic structures built of constantly growing and shrinking rows of elementary proteins called tubulins. To increase their rigidity, microtubules associate in bundles and interact with stabilizing proteins in complex networks, which are essential for many cellular processes such as polar growth.

"To really understand the architecture of the cytoskeleton you have to see the entire cell in three dimensions," says Claude Antony, whose team carried out the research at EMBL, "but at the same time you need a very good resolution to be able to investigate its structural details. It is impossible to obtain such detailed images of a eukaryotic cell with normal microscopes."

To bridge the gap between global overview and structural detail Antony's team collaborated with yeast and electron microscopy expert Richard McIntosh at the University of Colorado. Using a technique called electron tomography, Johanna Höög, PhD student Antony's lab, took pictures of sequential sections of a yeast cell from many different angles through an electron microscope and combined these snapshots into a 3D reconstruction on the computer. A similar principle is used to generate brain scans.

For the first time they could see directly what previous studies in fission yeast only suggested. In times when a cell is not dividing, a microtubule bundle consists of 4-5 individual filaments that are physically connected with each other via minute bridges likely formed by proteins. In the networks created through this crosslinking the orientation of microtubules is crucial. The filaments are polar structures, their two ends grow and shrink at different rates. The study created a precise map indicating the location of all growing and shrinking microtubule ends in the cell.

The images also shed light on other important functions of microtubules, revealing that the cytoskeleton determines the correct positioning of mitochondria, the energy-producing organelles, throughout the cell.

"Our 3D image of fission yeast can serve as a reference map of the cell for all biologists interested in its architecture," says Johanna Höög. "You can extract information about all sorts of cellular structures and processes from it or use it to place findings into the spatial context of the cell."

Yeast is one of the most commonly used model organisms in biology. It has many similarities with higher eukaryotes, including multicellular organisms. Many of the insights gained into its cellular organisation are likely to apply also to mammals. In mammalian nerve cells, for example, microtubule bundles similar to those observed in yeast are essential for the transmission of the signal from cell to cell.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

European Molecular Biology Laboratory. "An Architectural Plan Of The Cell." ScienceDaily. ScienceDaily, 15 March 2007. <www.sciencedaily.com/releases/2007/03/070306101110.htm>.
European Molecular Biology Laboratory. (2007, March 15). An Architectural Plan Of The Cell. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2007/03/070306101110.htm
European Molecular Biology Laboratory. "An Architectural Plan Of The Cell." ScienceDaily. www.sciencedaily.com/releases/2007/03/070306101110.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) — Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins