Featured Research

from universities, journals, and other organizations

Little-known Cell Networks Vital To Circadian Rhythm Revealed

Date:
May 8, 2007
Source:
Scripps Research Institute
Summary:
In a wide-ranging systems biology study of circadian rhythm, scientists have uncovered some little-known cellular mechanisms for sustaining circadian rhythm and limiting the impact of genetic clock mutations in mammals. The new findings could have important implications for future circadian studies, and point researchers toward new ways to manipulate human circadian rhythm at the molecular level to treat diseases such as bipolar disorder.

In a wide-ranging systems biology study of circadian rhythm, scientists have uncovered some little-known cellular mechanisms for sustaining circadian rhythm and limiting the impact of genetic clock mutations in mammals. The new findings could have important implications for future circadian studies, and point researchers toward new ways to manipulate human circadian rhythm at the molecular level to treat diseases such as bipolar disorder.

Circadian rhythm is the basic 24-hour cycle that involves various behaviors, including sleeping and eating, in all living organisms. In mammals, the circadian clock is organized hierarchically in a series of multiple oscillators. At the top of this hierarchy, the suprachiasmatic nucleus (SCN), a region of the brain that is the body"s main rhythmic regulator, integrates light information from the eyes and coordinates peripheral oscillators throughout the body.

By examining effects of genetic mutations at the level of single cells and tissues, the study showed that intercellular mechanisms are in fact essential to the operation of cellular circadian clocks.

"Our study reveals some previously overlooked mechanisms for sustaining cellular circadian rhythm," said Steve A. Kay, whose laboratory spearheaded the research. "Essentially, when cells communicate en masse through these highly networked electrical or neurochemical interactions, the system responds far more effectively."

The SCN intercellular network, Kay said, is necessary not only to stabilize oscillators in the peripheral tissues but also to provide a robust response to various genetic mutations. In fact, the network interactions unique to the SCN can compensate for some genetic defects in the Period (Per) and Cryptochrome (Cry) genes-the clock genes-to preserve circadian rhythm. In fact, the circadian defects observed in mutant oscillators were clearly more extreme when measured at the tissue and cell levels than demonstrated by behavioral observations.

"Because single cells are ordinarily capable of functioning as autonomous oscillators," Kay noted, "our previous understanding of clock mechanisms has rested precariously on the idea that if we studied behavior, we could assume that same thing was happening at the single cell level. Our study shows that's not the case."

The lack of networked interactions in peripheral tissues may actually be an adaptive feature in most circumstances. SCN cells in vivo must synchronize not only to light-dark cycles but also to one another to coordinate circadian behavior. Lack of coupling may allow peripheral oscillators to anticipate and respond rapidly not only to the synchronizing cues emanating from the SCN but also to physiological signals related to feeding and behavior.

"Future studies should focus on addressing the system impact of these cellular networks," Kay said. "Our results validate clock model predictions previously overlooked or sometimes regarded as model flaws. Newer models are needed to accommodate the novel cell-autonomous phenotypes we uncovered."

The new study was published in the May 3, 2007 (Volume 129, Issue 3) edition of the journal Cell. Other authors of the study, Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network, include Aaron A. Priest of The Scripps Research Institute; Andrew C. Liu, Hien G. Tran and Eric E. Zhang of The Scripps Research Institute and Genomics Institute of the Novartis Research Foundation; David K. Walsh of The Scripps Research Institute, The University of California, San Diego, and Veterans Affairs San Diego Healthcare System; Oded Singer and Inder M. Verma of the Salk Institute for Biological Studies; Ethan D. Buhr of Northwestern University; Kirsten Meeker of the University of California, SB; Francis J. Doyle of the University of California, Santa Barbara, and; Joseph S. Takahashi of Howard Hughes Medical Institute and Northwestern University. The study was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Little-known Cell Networks Vital To Circadian Rhythm Revealed." ScienceDaily. ScienceDaily, 8 May 2007. <www.sciencedaily.com/releases/2007/05/070503125714.htm>.
Scripps Research Institute. (2007, May 8). Little-known Cell Networks Vital To Circadian Rhythm Revealed. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/05/070503125714.htm
Scripps Research Institute. "Little-known Cell Networks Vital To Circadian Rhythm Revealed." ScienceDaily. www.sciencedaily.com/releases/2007/05/070503125714.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins