Featured Research

from universities, journals, and other organizations

Drug Commonly Used To Treat Bipolar Disorder Dramatically Increases Lifespan In Worms

Date:
October 31, 2007
Source:
Buck Institute for Age Research
Summary:
Nematode worms treated with lithium show a 46 percent increase in lifespan, raising the tantalizing question of whether humans taking the mood affecting drug are also taking an anti-aging medication. Lithium has been used to treat mood affective disorders, including bipolar disease for decades.

Dr. Gordon J. Lithgow led a new study showing that nematode worms treated with lithium show a 46 percent increase in lifespan, raising the tantalizing question of whether humans taking the mood affecting drug are also taking an anti-aging medication.
Credit: Image courtesy of Buck Institute for Age Research

Nematode worms treated with lithium show a 46 percent increase in lifespan, raising the tantalizing question of whether humans taking the mood affecting drug are also taking an anti-aging medication.

Related Articles


Lithium has been used to treat mood affective disorders, including bipolar disease for decades. While the drug has been shown to protect neurons, the underlying mechanism of its therapeutic action is not understood. In humans, lithium's therapeutic range is very limited and the drug has serious side effects. The research provides a novel genetic approach to understanding how lithium works and highlights the utility of using the nematode C. elegans as a research subject in the field of "pharmacogenetics". Pharmocogenetics involves the study of genetic factors that influence an organism's reaction to a drug.

In the study, scientists discovered that longevity was increased in the worms when the lithium "turned down" the activity of a gene that modulates the basic structure of chromosomes. Results of the Buck Institute study, led by faculty member Gordon J. Lithgow, PhD, are currently published online in the Journal of Biological Chemistry.

Lithgow believes that lithium impacts many genes. "Understanding the genetic impact of lithium may allow us to engineer a therapy that has the same lifespan extending benefits," said Lithgow. "One of the larger questions is whether the lifespan extending benefits of the drug are directly related to the fact that lithium protects neurons." The process of normal aging in humans is intrinsically linked to the onset of neurodegenerative disease.

However, the cellular changes and events due to aging that impact neurodegeneration are not yet understood said Lithgow. Studies involving compounds such as lithium could provide breakthroughs in the attempt to understand the biomedical link between aging and disease. Lithgow and his lab are now surveying tens of thousands of compounds for affects on aging.

The study highlights the efficacy of using C. elegans as a new way of studying drug toxicity and genetic impacts of compounds currently in drug development or already in use in humans. "The use of simple model organisms with well developed genetic tools can speed the identification of molecular targets," said Lithgow. "This could facilitate the development of improved therapies for diseases."

Others involved in the study include Simon Melov and Maithili C. Vantipalli, also of the Buck Institute; Gawain McColl, the lead author, formerly of the Buck Institute, now at the Mental Health Research Institute of Victoria, Australia; along with David W. Killilea of Children's Hospital Oakland Research Institute, Oakland, CA and Alan E. Hubbard, University of California, Berkeley.

G.M was supported by the American Federation for Aging Research. S.M was supported by the Ellison Medical Research Foundation, and NIH AG24385 and AG18679. G.J.L is supported by NIH AG21069, AG22868, NS050789-01, the Ellison Medical Research Foundation, the Glenn Foundation for Medical Research and the Herbert Simon Family Medical Foundation. Gene expression studies were facilitated by a Nathan Shock award P30AG025708. All other nematode strains were obtained from the Caenorhabditis Genetics Center, funded by the National Institutes of Health National Center for Research Resources.


Story Source:

The above story is based on materials provided by Buck Institute for Age Research. Note: Materials may be edited for content and length.


Cite This Page:

Buck Institute for Age Research. "Drug Commonly Used To Treat Bipolar Disorder Dramatically Increases Lifespan In Worms." ScienceDaily. ScienceDaily, 31 October 2007. <www.sciencedaily.com/releases/2007/10/071030153931.htm>.
Buck Institute for Age Research. (2007, October 31). Drug Commonly Used To Treat Bipolar Disorder Dramatically Increases Lifespan In Worms. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2007/10/071030153931.htm
Buck Institute for Age Research. "Drug Commonly Used To Treat Bipolar Disorder Dramatically Increases Lifespan In Worms." ScienceDaily. www.sciencedaily.com/releases/2007/10/071030153931.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins