Featured Research

from universities, journals, and other organizations

First-ever Genetic Animal Model Of Autism

Date:
December 9, 2007
Source:
American College of Neuropsychopharmacology
Summary:
By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to new research.

By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to research presented at the American College of Neuropsychopharmacology annual meeting. This animal model could help researchers better understand abnormal brain function in autistic humans, which could help them identify and improve treatment strategies. Broader neuropsychiatric conditions include Fragile X, the most common cause of inherited mental impairment, and Rett Syndrome, a childhood neurodevelopmental disorder characterized by normal early development followed by slowed brain and head growth, seizures, and mental retardation.

Related Articles


Autism is a neuropsychiatric disorder characterized by repetitive behaviors and by impairment in social interactions and communication skills. These symptoms can coexist with either enhanced or decreased cognitive abilities and skills.

"Prior to this study we knew next to nothing about the mechanisms of autism in the brain," says study researcher Craig M. Powell, M.D., Ph.D., assistant professor of neurology and psychiatry at the University of Texas Southwestern Medical Center at Dallas. "With this research, we can study changes in the brain that lead to autistic behaviors and symptoms, which may help us understand more about progression and treatment of the disorder."

The research team, led by Thomas Südhof, M.D., professor and chairman of neuroscience at UT Southwestern, replaced the normal mouse neurologin-3 gene with a mutated neuroligin-3 gene associated with autism in humans. By doing so, the team was able to create a gene in the mice that is similar to the human autism disease gene. While the result amounted to a very small change in their genetic makeup, it perfectly mimicked the same small change occurring in some patients with human autism.

Dr. Powell studied the genetically altered mice and found that, when examined in behavioral tests that may reflect key signs of autism, they showed decreased social interaction with other mice; other traits, such as anxiety, coordination and pain sensitivity, were unaffected. These social interaction deficits, Dr. Powell says, are hallmark features of human autism. In addition, the mice showed enhanced spatial learning abilities, which may resemble the enhanced cognitive abilities in autistic savants (people who have a severe developmental or mental handicap as well as extraordinary mental abilities).

"These findings could be especially helpful in identifying novel treatment approaches. We already know that inhibitory chemical synaptic transmission from one neuron to the next is increased in this mouse model. Now we can test drugs that decrease this effect directly in the mice and ask whether this reverses their social interaction deficits," Dr. Powell says. "For now, the mainstay of autism treatment is still behavioral therapy. The earlier we can get patients involved with behavioral interventions, the better off people with autism will be." Dr. Powell adds that the model gives researchers insight into mouse brains which share important parallels with brains of living humans, which can only be studied in limited ways with the use of new brain imaging tools.


Story Source:

The above story is based on materials provided by American College of Neuropsychopharmacology. Note: Materials may be edited for content and length.


Cite This Page:

American College of Neuropsychopharmacology. "First-ever Genetic Animal Model Of Autism." ScienceDaily. ScienceDaily, 9 December 2007. <www.sciencedaily.com/releases/2007/12/071208092448.htm>.
American College of Neuropsychopharmacology. (2007, December 9). First-ever Genetic Animal Model Of Autism. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2007/12/071208092448.htm
American College of Neuropsychopharmacology. "First-ever Genetic Animal Model Of Autism." ScienceDaily. www.sciencedaily.com/releases/2007/12/071208092448.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins