Featured Research

from universities, journals, and other organizations

New Protein Tag Enhances View Within Living Cells

Date:
February 27, 2008
Source:
Cell Press
Summary:
The view into the inner world of living cells just got a little brighter and more colorful. A powerful new research tool, when used with other labeling technologies, allows simultaneous visualization of two or more different proteins as well as the ability to distinguish young and old copies of a protein within one living cell.

The view into the inner world of living cells just got a little brighter and more colorful. A powerful new research tool, when used with other labeling technologies, allows simultaneous visualization of two or more different proteins as well as the ability to distinguish young and old copies of a protein within one living cell.

Related Articles


Scientists have developed innovative technologies that make use of fluorescent molecules to visualize proteins and biochemical processes in living cells. Various technologies exist that allow transfer of fluorescent properties to specific proteins of interest.

One such method, developed by Dr. Kai Johnsson and colleagues at Ecole Polytechnique Fιdιrale de Lausanne, is derived from the human DNA repair enzyme alkylguanine-DNA alkyltransferase (AGT). This tool, called SNAP-tag, can be covalently labeled in living cells using benzylguanine (BG) derivatives bearing a chemical probe.

Now, Dr. Johnsson's group has modified SNAP-tag to generate a new AGT-based tag, named CLIP-tag, which reacts specifically with benzylcytosine (BC) derivatives. "Use of SNAP-tag in conjunction with CLIP-tag permits simultaneous labeling of two proteins with different molecular probes for multiparameter imaging of cellular functions in living cells," explains Dr. Johnsson.

The researchers demonstrate that SNAP-tag and CLIP-tag have some significant advantages over existing labeling methods for conducting multi-protein studies within living cells. Both tags can label proteins in any cellular compartment, have very high specificity towards their native substrates, low reactivity to other BC and BG derivatives and have similar properties that will aid in comparison of one fusion protein to another. Further, chemical labeling methods allow for visualization of proteins in organisms that are not suitable for expression of autofluorescent proteins and are well suited for experiments that make use of other biochemical characterizations after imaging.

"The labeling of CLIP-tag fusion proteins is highly specific and mutually independent from other existing labeling approaches, making the method a highly valuable tool for chemical biology," concludes Dr. Johnsson. "Furthermore, we show for the first time simultaneous pulse-chase experiments to visualize different generations of two different proteins in one sample, allowing concurrent investigation of two different dynamic processes."

The research is published by Cell Press in the February issue of Chemistry and Biology.

The researchers include Arnaud Gautier, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Alexandre Juillerat, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Christian Heinis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Ivan Reis Correa, Jr., Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Maik Kindermann, Covalys Biosciences, Witterswil, Switzerland; Florent Beaufils, Covalys Biosciences, Witterswil, Switzerland; and Kai Johnsson, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "New Protein Tag Enhances View Within Living Cells." ScienceDaily. ScienceDaily, 27 February 2008. <www.sciencedaily.com/releases/2008/02/080222143826.htm>.
Cell Press. (2008, February 27). New Protein Tag Enhances View Within Living Cells. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2008/02/080222143826.htm
Cell Press. "New Protein Tag Enhances View Within Living Cells." ScienceDaily. www.sciencedaily.com/releases/2008/02/080222143826.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins