Featured Research

from universities, journals, and other organizations

Biological Electron Transfer Captured In Real Time

Date:
March 4, 2008
Source:
University of Helsinki
Summary:
Scientists have for the first time succeeded in monitoring electron transfer by Complex I in real time. In the future, this work might, for example, have medical relevance, because most of the maternally inherited so-called mitochondrial diseases are caused by dysfunction of Complex I.

Two research teams led by Dr. Michael Verkhovsky and Prof. Mårten Wikström of the Institute of Biotechnology of the University of Helsinki have for the first time succeeded in monitoring electron transfer by Complex I in real time. In the future, this work might, for example, have medical relevance, because most of the maternally inherited so-called mitochondrial diseases are caused by dysfunction of Complex I.

This achievement required developing and building of a special device by which the enzyme-catalysed electron transfer could be captured at different time points by stopping the reaction at liquid nitrogen temperatures, on a microsecond (one millionth of a second) time scale. The electrons are very small elementary particles, which is why their transfer is very fast. The results give certain hints of the function of Complex I at the molecular level.

Electron transfer is central to many chemical reactions in the cell. It has particular functional importance in cell respiration, which in eukaryotes takes place in the inner mitochondrial membrane, and in the cell membrane of prokaryotes. In cellular respiration molecules stemming from food are oxidised to carbon dioxide, and the electrons liberated in the process are "fed" into the so-called respiratory chain, which consists of three successive membrane-bound enzyme complexes, finally to react with the oxygen we breathe, which is reduced to water using these electrons.

The purpose of electron transfer in cellular respiration is to release the major part of the energy of foodstuffs and to conserve it in a suitable form, ATP (adenosine triphosphate), which the cell may use in its energy-requiring reactions (e.g. biosynthesis, active transport, mechanical work), which are essential e.g. during fetal development and growth, in neural and kidney function, muscle contraction, etc. The energy captured in cellular respiration is transduced to ATP in two phases.

The role of the respiratory chain is to couple electron transfer to the translocation of positively charged protons across the membrane, so that the mitochondrial membrane (or the cell membrane in bacteria) becomes electrically polarised, just like charging up a battery. In the second phase, the voltage difference of the battery is used to drive the protons back across the membrane, coupled to the synthesis of ATP by very special molecular machinery.

The first enzyme complex of the respiratory chain is called Complex I. High-energy electrons are fed into this complex in the form of a reduced coenzyme, NADH (nicotinamide adenine dinucleotide), which is oxidised to NAD+ having donated its two electrons. After this, the electrons are transferred along several protein-bound iron/sulphur centres in Complex I until they reach their destination, a molecule of ubiquinone, which is thus reduced to ubiquinol.

This reaction, as catalysed by Complex I, is linked to proton translocation across the membrane and thus leads to "charging the battery". At a later stage ubiquinol donates its electrons further in the respiratory chain (ultimately to oxygen), by which it is oxidised back to ubiquinone to allow continuation of Complex I function.

This work is published in journal of the American National Academy of Sciences. 


Story Source:

The above story is based on materials provided by University of Helsinki. Note: Materials may be edited for content and length.


Cite This Page:

University of Helsinki. "Biological Electron Transfer Captured In Real Time." ScienceDaily. ScienceDaily, 4 March 2008. <www.sciencedaily.com/releases/2008/03/080303190607.htm>.
University of Helsinki. (2008, March 4). Biological Electron Transfer Captured In Real Time. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/03/080303190607.htm
University of Helsinki. "Biological Electron Transfer Captured In Real Time." ScienceDaily. www.sciencedaily.com/releases/2008/03/080303190607.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins