Featured Research

from universities, journals, and other organizations

Spotlight On A Key Player In The Dance Of Chromosomes

Date:
May 16, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
Cell division is essential to life, but the mechanism by which emerging daughter cells organize and divvy up their genetic endowments is little understood. Researchers report on how a key motor protein orchestrates chromosome movements at a critical stage of cell division.

Illinois postdoctoral researcher Hasan Yardimci, left, and physics professor Paul Selvin explored the role of a motor protein, CENP-E, in moving chromosomes during a critical phase of cell division.
Credit: Photo by L. Brian Stauffer

Cell division is essential to life, but the mechanism by which emerging daughter cells organize and divvy up their genetic endowments is little understood. In a new study, researchers at the University of Illinois and Columbia University report on how a key motor protein orchestrates chromosome movements at a critical stage of cell division.

Related Articles


Within the complex world of the cell, motor proteins function as a kind of postal service. These proteins carry cargo from one location to another in the cell, a job that requires precision, in both the location and the timing of delivery. They are fueled by a small molecule, adenosine tri-phosphate (ATP).

Some motor proteins are essential to mitosis – the process by which cell division occurs in higher organisms. During cell division it is important for chromosomes to line up at the middle of the parent cell allowing for their separation between the two daughter cells.

Motor proteins play a key role in the movement of chromosomes to and from the poles of the cell. Should any of these processes lose coordination, it could result in disease or cell death.

How chromosomes move during cell division is a question that is fundamental to biology and is of importance in understanding many diseases. University of Illinois physics professor Paul Selvin and his colleagues focused on a motor protein, centromeric protein E (CENP-E) that is known to be associated with chromosomes.

“The question is whether CENP-E acts like a transporter or like an anchor,” Selvin said.

“A transporter moves things around the cell, whereas an anchor sits someplace in the cell, holds onto something, and causes the thing to be held down,” Selvin said. “It turns out CENP-E is known to be an anchor, but is it also a transporter?”

Earlier studies had established a role for CENP-E in aligning paired chromosomes. This alignment is important for ensuring that one of each pair makes its way into a different daughter cell.

CENP-E is part of a large class of proteins called kinesins. These motor proteins walk across the cell on special tightropes, called microtubules, using ATP as an energy source.

“The motion of ’normal‘ kinesin, kinesin-1, is now well known,” Selvin said. “It turns out it’s like a little person – it walks with its two feet, one in front of the other. I was interested to know whether the normal rules of how kinesin walks apply to these different kinds of kinesins.”

“In vivo studies are hampered by the presence of lots of other proteins, making it hard to study how much a single protein moves, how fast it moves and how much force it produces,” said Hasan Yardimci, a post doctoral researcher in Selvin's lab and lead author on the study.

Instead, Yardimci used a technique that allowed him to look at one molecule at a time.

The most direct way to measure how a protein moves is to watch it in real time. Using special molecular bulbs called quantum dots, which light up the protein, Yardimci was able to watch CENP-E move along its microtubule tightrope. By resolving these motions on the nanometer scale, he was able to make two key observations.

“The protein takes eight nanometer steps in a hand-over-hand fashion,” Yardimci said. The protein moved in a direction consistent with the way chromosomes move within cells, over lengths that are normally observed during cell division.

To test the kind of loads that CENP-E could withstand, Yardimci set up a tug of war between a micron-sized bead and the protein. As the protein moved, it pulled on the bead.

By measuring the force on the bead, the researchers were able to calculate how much force CENP-E could exert.

The observation that CENP-E shares several common features with kinesin-1 provides insights into its molecular workings.

“We showed that it is likely that CENP-E moves chromosomes around,” Selvin said. “That is, we showed that it is a transporter in vitro, hauling around a little bead. Now we need to do it in vivo, on chromosomes.”

The study appeared in the Proceedings of the National Academy of Sciences. The research team included Steven Rosenfeld at Columbia University.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Spotlight On A Key Player In The Dance Of Chromosomes." ScienceDaily. ScienceDaily, 16 May 2008. <www.sciencedaily.com/releases/2008/05/080513114829.htm>.
University of Illinois at Urbana-Champaign. (2008, May 16). Spotlight On A Key Player In The Dance Of Chromosomes. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/05/080513114829.htm
University of Illinois at Urbana-Champaign. "Spotlight On A Key Player In The Dance Of Chromosomes." ScienceDaily. www.sciencedaily.com/releases/2008/05/080513114829.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins