Featured Research

from universities, journals, and other organizations

Bacteria In Extremely Hostile Environments: New Protein Discovered That Repairs DNA Under Extreme Conditions

Date:
June 30, 2008
Source:
Helmholtz Association of German Research Centres
Summary:
Mild environmental conditions are a prerequisite for life. Strong acids or dissolved metallic salts in high concentrations are detrimental to both humans and to simpler life forms, such as bacteria. Such conditions destroy proteins, ensuring that all biological functions in the cells come to a standstill. So what do we find at the limits of hostile conditions where we still find life?

Mild environmental conditions are a prerequisite for life. Strong acids or dissolved metallic salts in high concentrations are detrimental to both humans and to simpler life forms, such as bacteria. Such conditions destroy proteins, ensuring that all biological functions in the cells come to a standstill. So what do we find at the limits of hostile conditions where we still find life?

Related Articles


Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig (Germany) have joined up with colleagues from Spain and Great Britain to identify an enzyme that requires acids and dissolved metals in order to function. The team describes its findings regarding the extreme protein of the archaebacterium Ferroplasma acidiphilum in the journal PNAS.

HZI scientist Dr. Olga Golyshina discovered Ferroplasma ten years ago and has been endeavouring to unlock its secrets ever since. "This organism is ideally adapted to extremely hostile environments. It likes to live in highly acidic solutions containing toxic heavy metals. It is unable to exist at all under normal conditions," she says, describing her research object. "We recently noted that Ferroplasma is unique in the world of living organisms, as it contains iron in high concentrations. Now we aim to discover how its proteins function under such extreme conditions."

For this purpose the team has selected a so-called DNA ligase. Enzymes of this type play a central role in important metabolic processes such as the duplication of genetic material in dividing cells and the repair of genetic damage. All DNA ligases investigated so far, including the DNA ligases of the so-called extremophile microorganisms that live in particularly inhospitable habitats which are either acidic, alkaline, hot or cold, , require mild environmental conditions. "The Ferroplasma DNA ligase is unique," states Olga Golyshina: "It actually requires extremely acidic conditions to work."

Iron gives the protein a purple colour

But this is not the only thing that scientists find surprising about this survival expert: "All of the DNA ligases studied so far do not contain iron, but require magnesium or potassium to function. Extraordinarily, the DNA ligase of Ferroplasma contains iron and does not need either magnesium or potassium. The iron is essential: removal results in loss of activity and, interestingly, its wonderful purple coloration."However, the colour is less fascinating than the fact that Ferroplasma does not die as a result of the ordinarily toxic high concentration of iron in its cells which would severely damage genetic material in other cells, triggering mutations.

"The fact that an enzyme contains metal ions that damage DNA for the repair of DNA seems contradictory," says project partner Prof. Peter Golyshin, who works at the HZI and Bangor University in Wales (GB). He suspects that the Ferroplasma genus occupied its ecological niche early in evolution. At that time the earth was very inhospitable; acids and metals in soluble form were everywhere. Peter Golyshin: "Maybe the ancestors of Ferroplasma integrated these substances into their metabolism. And afterwards they never left its environment, even as this became increasingly scarce on earth."

Prof. Ken Timmis, Head of the Environmental Microbiology Group at HZI, is considering the future uses of the findings of the team: "Enzymes are required for many biotechnological applications. The chemical conditions under which these processes occur are often rather hostile. Enzymes from Ferroplasma, such as DNA ligase, clearly are ideally suited for processes that require hostile conditions, so this microbe may represent a rich source of biological catalysts not thus far obtainable from any other source". Timmis also considers applications in the field of medicine a possibility: "The possibility of DNA repair under acidic conditions may ultimately provide a new treatment option for disease conditions characterized by over-acidification of cells that favour the formation of tumours."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ferrer et al. A purple acidophilic di-ferric DNA ligase from Ferroplasma. Proceedings of the National Academy of Sciences, 2008; DOI: 10.1073/pnas.0800071105

Cite This Page:

Helmholtz Association of German Research Centres. "Bacteria In Extremely Hostile Environments: New Protein Discovered That Repairs DNA Under Extreme Conditions." ScienceDaily. ScienceDaily, 30 June 2008. <www.sciencedaily.com/releases/2008/06/080625105718.htm>.
Helmholtz Association of German Research Centres. (2008, June 30). Bacteria In Extremely Hostile Environments: New Protein Discovered That Repairs DNA Under Extreme Conditions. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/06/080625105718.htm
Helmholtz Association of German Research Centres. "Bacteria In Extremely Hostile Environments: New Protein Discovered That Repairs DNA Under Extreme Conditions." ScienceDaily. www.sciencedaily.com/releases/2008/06/080625105718.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins