Featured Research

from universities, journals, and other organizations

Key Mechanisms For Affinity Between Transient Binding Proteins

Date:
July 2, 2008
Source:
Institute for Research in Biomedicine (IRB Barcelona)
Summary:
Researchers have performed the first computational analysis of transient interactions between proteins in order to reveal what determines their recognition as ideal partners and have unveiled part of the molecular mechanisms involved in the specificity of this binding.

Most of the functions performed by a cell are the result of interactions between proteins, which recognise their binding partner by affinity features localized on the protein surface. There are many kinds of interactions; however, the most complicated to study from the perspective of structural biology are those which are transient.

This type of interaction is brief and occurs through a large section of the protein surface- the globular domain -, and a very small section of the surface of another proteins, the so-called lineal motif or peptide. The difficulty lies in the fact that these relations are of short duration and there are few crystallized peptide structures.

Researchers at the Institute for Research in Biomedicine (IRB Barcelona) have performed the first computational analysis of transient interactions between proteins in order to reveal what determines their recognition as ideal partners and have unveiled part of the molecular mechanisms involved in the specificity of this binding.

"Knowing what determines protein-protein binding may have implications, for example, in the design of new drugs”, explains Patrick Aloy, ICREA research professor at IRB Barcelona, “however, we currently know very little about this type of binding". These kinds of interactions occur mainly between proteins involved in signalling pathways and regulatory networks, and they serve to translate and transmit extracellular signals to the cell nucleus.

Context is relevant

In Patrick Aloy’s Structural Biology Laboratory they have detected all interactions possible between the globular domain and peptide by exploring the 45,000 3D protein structures currently available on the international database PDB (Protein Data Base), and establishing rules from them. "One of the conclusions from the study is that what determines that two proteins recognise each other as binding partners falls outside the lineal contact motif, in what is called the context", explains Aloy.

The contextual residues are amino acids that are found in nearby regions of the lineal motif but do not form part of it. "The binding strength between two proteins is determined by contacts found in the lineal motif but it is the contextual residues that hold information about the most suitable proteins, thereby preventing undesirable binding between similar proteins", explains Amelie Stein, a pre-doctoral student with Aloy’s lab and first author of the article.

The analysis performed by the researchers has also revealed that in certain conditions non native interactions may occur, that is to say, interactions with other proteins that are not optimum. "This is what we refer to as complementary partners, other interaction proteins that can compensate for the lack of the ideal protein", explains Stein. According to the researchers, these non-optimum interactions allow the establishment of emergency circuits that increase the strength of cellular networks. Specifically, one line of research derived from the study by Aloy and Stein focuses on the identification of proteins unable to establish safety circuits and therefore with a good chance of becoming future therapeutic targets.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine (IRB Barcelona). Note: Materials may be edited for content and length.


Journal Reference:

  1. Amelie Stein and Patrick Aloy. Contextual specificity in peptide-mediated protein interaction. PLoS One, July 1, 2008 DOI: 10.1371/journal.pone.0002524

Cite This Page:

Institute for Research in Biomedicine (IRB Barcelona). "Key Mechanisms For Affinity Between Transient Binding Proteins." ScienceDaily. ScienceDaily, 2 July 2008. <www.sciencedaily.com/releases/2008/07/080702094601.htm>.
Institute for Research in Biomedicine (IRB Barcelona). (2008, July 2). Key Mechanisms For Affinity Between Transient Binding Proteins. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/07/080702094601.htm
Institute for Research in Biomedicine (IRB Barcelona). "Key Mechanisms For Affinity Between Transient Binding Proteins." ScienceDaily. www.sciencedaily.com/releases/2008/07/080702094601.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins