Featured Research

from universities, journals, and other organizations

Key To Virulence Protein Entry Into Host Cells Discovered

Date:
August 6, 2008
Source:
Virginia Tech
Summary:
Researchers from the Virginia Bioinformatics Institute at Virginia Tech have identified the region of a large family of virulence proteins in oomycete plant pathogens that enables the proteins to enter the cells of their hosts. The protein region has the ability to carry the virulence proteins across the membrane surrounding plant cells without any additional machinery from the pathogen. Once inside the plant cell, the proteins suppress the immune system of the plant allowing the infection to progress.

Researchers from the Virginia Bioinformatics Institute (VBI) at Virginia Tech have identified the region of a large family of virulence proteins in oomycete plant pathogens that enables the proteins to enter the cells of their hosts.

The protein region contains the amino acid sequence motifs RXLR and dEER and has the ability to carry the virulence proteins across the membrane surrounding plant cells without any additional machinery from the pathogen. Once inside the plant cell, the proteins suppress the immune system of the plant allowing the infection to progress. The work, which focused on the virulence protein Avr1b from the soybean plant pathogen Phytophthora sojae, is published in The Plant Cell.1

Oomycetes are fungal-like organisms related to marine algae that cause tens of billions of dollars of losses to agriculture, forestry and natural ecosystems every year. The oomycete Phytophthora infestans caused the Irish potato famine in the nineteenth century. Another Phytophthora species, P. ramorum, is causing Sudden Oak Death disease in California's coastal forests. P. sojae results in $200-300 million in annual losses for commercial soybean farmers in the United States and estimated annual soybean losses of $1-2 billion worldwide. All of these oomycete species contain hundreds of genes that encode for virulence proteins that have the RXLR-dEER region.2

The virulence proteins, including Avr1b, enter the soybean host where they are capable of suppressing an important process in plant immunity called programmed cell death.3 Programmed cell death is an in-built suicide mechanism that kills infected plant tissue, filling it with toxins so the pathogen can no longer feed on it. By preventing this protective mechanism in the host, the virulence proteins ensure that the pathogen can establish an unassailable foothold in the plant tissue from which the pathogen can pursue its destructive path.

Postdoctoral fellow Dr. Daolong Dou, the lead author of the article, commented: "We have suspected for a long time that these virulence proteins had some way of slipping inside plant cells to suppress immunity. Our findings finally nail down that mechanism and enable us to focus on how to block the entry mechanism."

The researchers also demonstrated that the RXLR and dEER motifs could be replaced by similar targeting sequences found in effector proteins produced by the malarial parasite Plasmodium. This hints that the targets of the effectors in the soybean and human hosts may be very ancient.

VBI Professor Brett Tyler remarked: "The finding that virulence proteins from oomycetes and the malaria parasite Plasmodium use the same entry mechanism means that we may be able to use the same or similar drugs to block infection by both groups of pathogens. This type of approach may also be relevant to other groups of pathogens, such as fungi, which we also suspect of slipping virulence proteins into host cells."

The breakthrough was enabled by an ingenious device for introducing DNA into living tissues invented by a Virginia Tech undergraduate, Shiv Kale. Kale, who has subsequently joined Dr. Tyler's research team as a graduate student, remarked: "The double-barreled Gene Gun enabled us to make much more accurate measurements of the Avr1b protein than were previously possible, which made it practicable to measure the action of the RXLR and dEER motifs." Kale was co-lead author of the article.

The research was supported by funding from the National Research Initiative of the United States Department of Agriculture's Cooperative State Research, Education and Extension Service, the National Science Foundation, the Netherlands Genomics Initiative, and the Virginia Bioinformatics Institute.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal References:

  1. Dou et al. RXLR-Mediated Entry of Phytophthora sojae Effector Avr1b into Soybean Cells Does Not Require Pathogen-Encoded Machinery. The Plant Cell, Online Aug 4, 2008; DOI: 10.1105/tpc.107.056093
  2. Jiang, RHY, Tripathy S, Govers F, Tyler BM. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving super-family with more than 700 members. Proceedings of the National Academy of Sciences, 105(12): 4874-4879
  3. Dou et al. Conserved C-Terminal Motifs Required for Avirulence and Suppression of Cell Death by Phytophthora sojae effector Avr1b. The Plant Cell Online, 2008; 20 (4): 1118 DOI: 10.1105/tpc.107.057067

Cite This Page:

Virginia Tech. "Key To Virulence Protein Entry Into Host Cells Discovered." ScienceDaily. ScienceDaily, 6 August 2008. <www.sciencedaily.com/releases/2008/08/080804190707.htm>.
Virginia Tech. (2008, August 6). Key To Virulence Protein Entry Into Host Cells Discovered. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2008/08/080804190707.htm
Virginia Tech. "Key To Virulence Protein Entry Into Host Cells Discovered." ScienceDaily. www.sciencedaily.com/releases/2008/08/080804190707.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins