Featured Research

from universities, journals, and other organizations

Tracking Down The Cause Of Mad Cow Disease: First Synthetic Prion Protein With An Anchor

Date:
October 10, 2008
Source:
Wiley-Blackwell
Summary:
Researchers in Germany and Switzerland have developed a new general method for the synthesis of anchored proteins, such as GPI-anchored prions, which cause scrapie and mad cow disease.

German and Swiss researchers have now "recreated" the first GPI-anchored prion in the laboratory.
Credit: Copyright Wiley-VCH

The cause of diseases such as BSE in cattle and Creutzfeld–Jakob disease in humans is a prion protein. This protein attaches to cell membranes by way of an anchor made of sugar and lipid components (a glycosylphosphatidylinositol, GPI) anchor. The anchoring of the prions seems to have a strong influence on the transformation of the normal form of the protein into its pathogenic form, which causes scrapie and mad cow disease.

A team headed by Christian F. W. Becker at the TU Munich and Peter H. Seeberger at the ETH Zurich has now “recreated” the first GPI-anchored prion in the laboratory. As they report in the journal Angewandte Chemie, they have been able to develop a new general method for the synthesis of anchored proteins.

The isolation of a complete prion protein that includes the anchor has not yet been achieved, nor has it been possible to produce a synthetic GPI-anchored protein. The function of the GPI anchor has thus remained in the dark. A new synthetic technique has now provided an important breakthrough for the German and Swiss team of researchers.

The sugar component of natural prion GPI anchors consists of five sugar building blocks, to which further sugars are attached through branches. Details of the lipid component have not been determined before. As a synthetic target, the researchers thus chose a construct made of the five sugars and one C18-lipid chain and worked out the corresponding synthetic route. First, the anchor was furnished with the sulfur-containing amino acid cysteine. The prion protein was produced with the use of bacteria and was given an additional thioester (a sulfur-containing group). The centerpiece of the new concept is the linkage of the protein and anchor by means of a native chemical ligation, in which the cysteine group reacts with the thioester. This allowed the prion protein to firmly attach to the vesicle membranes by way of the artificial anchor.

This new concept will allow production of sufficient quantities of proteins modified with GPI anchors for in-depth studies. Experiments with the artificial GPI prion protein should help to clarify the influence of membrane association on conversion of the protein into the pathogenic scrapie form. This should finally make it possible to track down the infectious form of the prion.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Becker et al. Semisynthesis of a Glycosylphosphatidylinositol-Anchored Prion Protein. Angewandte Chemie International Edition, 2008; DOI: 10.1002/anie.200802161

Cite This Page:

Wiley-Blackwell. "Tracking Down The Cause Of Mad Cow Disease: First Synthetic Prion Protein With An Anchor." ScienceDaily. ScienceDaily, 10 October 2008. <www.sciencedaily.com/releases/2008/10/081008113430.htm>.
Wiley-Blackwell. (2008, October 10). Tracking Down The Cause Of Mad Cow Disease: First Synthetic Prion Protein With An Anchor. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/10/081008113430.htm
Wiley-Blackwell. "Tracking Down The Cause Of Mad Cow Disease: First Synthetic Prion Protein With An Anchor." ScienceDaily. www.sciencedaily.com/releases/2008/10/081008113430.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins