Featured Research

from universities, journals, and other organizations

Nanosensors Quickly Detect Possible DNA Mutations

Date:
March 10, 2009
Source:
Basque Research
Summary:
Researchers have developed electrochemical sensors that, amongst other functions, enable the detection of possible mutations in DNA in a more rapid manner that has been achieved to date.

Researchers at the Cidetec-IK4 technological centre have developed electrochemical sensors that, amongst other functions, enable the detection of possible mutations in DNA in a more rapid manner that has been achieved to date.

Related Articles


The most notable aspect of the developed research is that this detection of DNA has been employed solely as a concept test, to study the viability of sensors. Thus, a wide range of possibilities has been opened for the coming years, in which nanosensors will be able to be applied to detect other types of molecules and even in the study of genetic illnesses.

The scientific journal NanoLetters, published by the American Chemical Society, has reflected the importance of this research, drawn up by a Cidetec-IK4 team in collaboration with the University of Berkeley and the CSIC in a project for the manufacture of nanosensors, both optical and electrochemical.

The achievement of this research, and the reason the article was published in NanoLetters, lies in the fact that the sensor developed employs only a nanotransistor the cable of which is a simple carbon nanotube. This has enabled the detection of non-modified DNA probes.

The sensor detects DNA sequences and, thus, could be employed in genetics and in biotechnology. With certain genetic illnesses, the causal gene is known. Patients with a specific sequence of genes develop a specific disease. What the sensor can do is to detect these specific sequences of DNA given that, by its nature, it is highly selective.

Cidetec-IK4’s innovate activity in this field was to design and synthesise a polymer that enabled the subsequent modification of the nanotube as the DNA anchor, by means of the molecules on the surface of the material. The article shows that, without the polymer, the nanosensor does not function. So, the fundamental contribution of Cidetec-IK4 in the project was to enable the functionalisation of the nanotubes through employing the polymer for the manufacture of the nanosensor.

Equally important to emphasise is that such high sensitivity has been achieved without the need to modify the DNA. In general, electrochemical sensors with high sensitivity usually need the marking of the molecules to be detected in order to increase their sensitivity. In this specific development, the fact of employing carbon nanotubes has enabled carrying out the detection of sequences directly.


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria Teresa Martnez. Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors. Nano Letters, 2009; 9 (2): 530 DOI: 10.1021/nl8025604

Cite This Page:

Basque Research. "Nanosensors Quickly Detect Possible DNA Mutations." ScienceDaily. ScienceDaily, 10 March 2009. <www.sciencedaily.com/releases/2009/03/090302090427.htm>.
Basque Research. (2009, March 10). Nanosensors Quickly Detect Possible DNA Mutations. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2009/03/090302090427.htm
Basque Research. "Nanosensors Quickly Detect Possible DNA Mutations." ScienceDaily. www.sciencedaily.com/releases/2009/03/090302090427.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins