Featured Research

from universities, journals, and other organizations

Study Challenges Notions Of How Genes Are Controlled In Mammals

Date:
April 23, 2009
Source:
The University of Queensland
Summary:
Scientists have probed further into the human genome than ever before. They have discovered how genes are controlled in mammals, as well as the tiniest genetic element ever found.

Researchers have discovered how genes are controlled in mammals, as well as the tiniest genetic element ever found.
Credit: iStockphoto/Eric Gevaert

An international consortium of scientists has probed further into the human genome than ever before. They have discovered how genes are controlled in mammals, as well as the tiniest genetic element ever found.

Related Articles


Their discoveries will be published in three milestone papers in the journal Nature Genetics.

The research was coordinated by the RIKEN Yokohama Omics Science Center in Japan as part of the FANTOM4 consortium, with researchers from The University of Queensland's Institute for Molecular Bioscience playing major roles in two of the papers.

PhD student Ryan Taft led one paper, on which Professor John Mattick was the senior author, while Associate Professor Sean Grimmond was a senior author on another paper led by Dr Geoff Faulkner.

"FANTOM4 has shown that instead of having one or a few 'master regulator' genes that control growth and development, there is a sophisticated network of regulatory elements that subtly influence the ways in which genes are expressed in different cells in the body," Professor John Mattick said.

This information will be very useful to medical and biological researchers, according to Associate Professor Sean Grimmond.

"We can use it to discover how cells transform from rapidly-growing 'blank slate' cells to mature cells with a specific function. This knowledge will help us determine, for example, why some cells turn cancerous, or how to control stem cells for use in regenerative medicine."

One of the papers describes the discovery of tiny RNAs, the smallest genetic elements yet known, which are linked to the expression of individual genes. Tiny RNAs are 18 nucleotides long, 100 times smaller than an average gene.

"Researchers had previously noticed small lengths of RNA in the genome, but thought that they were degraded segments of larger genetic elements," Mr Taft said.

"We found that they were too common and too specifically distributed to be rubbish. They are widely associated with promoters that switch on genes, and we believe they may have a role in gene activation. Once we understand their role more explicitly, we hope to use tiny RNAs to artificially control gene expression."

RNA is a molecule similar to DNA that translates the genetic information in DNA into proteins, or as in the case of tiny RNAs, can regulate longer RNA molecules before they are translated to proteins.

Another paper investigated retrotransposons, genetic elements that move around the genome and leave copies of themselves behind.

"The dogma in the field is that retrotransposons are only active in cancer cells and cells that turn into eggs and sperm," Dr Faulkner said. "Our results showed that retrotransposons that can no longer move around the genome may still be expressed in a broad range of cells, and thereby regulate the expression of nearby genes."

This is the fourth incarnation of the FANTOM consortium, which seeks to discover more about the workings of mammalian genomes through large-scale "systems biology" approaches.


Story Source:

The above story is based on materials provided by The University of Queensland. Note: Materials may be edited for content and length.


Journal References:

  1. Faulkner et al. The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 2009; DOI: 10.1038/ng.368
  2. Suzuki et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009; DOI: 10.1038/ng.375
  3. Taft et al. Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 2009; DOI: 10.1038/ng.312

Cite This Page:

The University of Queensland. "Study Challenges Notions Of How Genes Are Controlled In Mammals." ScienceDaily. ScienceDaily, 23 April 2009. <www.sciencedaily.com/releases/2009/04/090420103549.htm>.
The University of Queensland. (2009, April 23). Study Challenges Notions Of How Genes Are Controlled In Mammals. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/04/090420103549.htm
The University of Queensland. "Study Challenges Notions Of How Genes Are Controlled In Mammals." ScienceDaily. www.sciencedaily.com/releases/2009/04/090420103549.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins