Featured Research

from universities, journals, and other organizations

New Tool Isolates RNA Within Specific Cells

Date:
May 19, 2009
Source:
University of Oregon
Summary:
Biologists, using fruit flies, have created a way to isolate RNA from specific cells, opening a new window on how gene expression drives normal development and disease-causing breakdowns.

Doctoral student Michael Miller.
Credit: Image courtesy of University of Oregon

A team of University of Oregon biologists, using fruit flies, has created a way to isolate RNA from specific cells, opening a new window on how gene expression drives normal development and disease-causing breakdowns.

Related Articles


While DNA (deoxyribonucleic acid) provides an identical genetic blueprint in every cell, RNA (ribonucleic acid) decodes genetic instructions that turn protein molecules on and off in different cell types.

The new tagging method, tested in a variety of subsets of Drosophila brain cells, is described in a paper put on line ahead of regular publication by the journal Nature Methods. Instead of scientists needing to physically separate cell types, they now can inject a chemically modified gene from the one-celled organism Toxoplasma gondii and activate it in only one cell type within a tissue. Only newly generated RNA in this cell type is then tagged and isolated.

"By analyzing RNA from different cell types, we can begin to understand how cellular differences are generated," said lead author Michael R. Miller, a National Science Foundation-funded doctoral student in the lab of Chris Doe, a UO biologist and Howard Hughes Medical Institute (HHMI) investigator. "Our new TU-tagging method should be useful for isolating cell-type specific RNA from other organisms, including mammals, and should be useful in broad areas of research including studies of development, neurobiology and disease."

The new non-toxic, non-invasive method makes it possible to "listen in" to the messages -- in fact, messenger RNA -- that the nucleus is sending each cell, without perturbing the cell, Doe said. "It is much like eavesdropping on a phone conversation, rather than pulling the person out of the house for questioning. The cell has no idea that its RNAs are being 'tagged' for isolation and study. That's good, because we get a more accurate idea of what the cell is saying."

That, Doe added, could be helpful for 'listening' to host cells before and after the initiation of a disease to determine how cells respond, or, for example study healthy immune cells versus bacterially-challenged immune cells or neurons before they learn a task and after they learn a task to determine what changes in the cell are caused by the experience.

The new UO-developed tool builds on work led by co-author Michael D. Cleary, who as a doctoral student at Stanford University unveiled the T. gondii-based approach for use in analyzing RNA synthesis and decay in 2005 in Nature Biotechnology. Cleary, now a faculty member at the University of California, Merced, worked on the UO project as a postdoctoral fellowship funded by the National Institutes of Health and HHMI.

Cleary's group built its tool with the enzyme uracil phosphoribosyltransferase (UPRT), a nucleotide salvage enzyme that prepares nucleotides for incorporation into newly synthesized RNA. By altering the nucleotide analog 4-thiouracil, the UPRT enzyme caused RNA to become tagged with thiouracil (TU), allowing the "TU-tagged" RNA to be purified from untagged RNA.

In Doe's lab, Miller, Cleary and research technician Kristin J. Robinson of the UO's institutes of Neuroscience and Molecular Biology manipulated Drosophila so that they would only express UPRT in specific target cells. The group tested the new approach in embryos, larvae and adults using microarray technology to detect cell type-specific gene expression. The researchers say the method should work in other systems, including vertebrates, by using gene transfer, retroviral delivery, electrical pulses of molecules through cell membranes, or messenger RNA injection.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "New Tool Isolates RNA Within Specific Cells." ScienceDaily. ScienceDaily, 19 May 2009. <www.sciencedaily.com/releases/2009/05/090518101910.htm>.
University of Oregon. (2009, May 19). New Tool Isolates RNA Within Specific Cells. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/05/090518101910.htm
University of Oregon. "New Tool Isolates RNA Within Specific Cells." ScienceDaily. www.sciencedaily.com/releases/2009/05/090518101910.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins