Featured Research

from universities, journals, and other organizations

Synthetic protein mimics structure, function of metalloprotein in nature

Date:
December 13, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists have designed a synthetic protein that is both a structural model and a functional model of a native protein, nitric-oxide reductase.

Scientists have designed a synthetic protein that is both a structural model and a functional model of a native protein, nitric-oxide reductase.

Related Articles


The designed protein "provides an excellent model system for studying nitric-oxide reductase, and for creating biocatalysts for biotechnological, environmental and pharmaceutical applications," said University of Illinois chemistry professor Yi Lu, who directed the work.

"Through rational design, we can better understand native proteins, and maybe make one that is more efficient, more stable or more functional," Lu said.

While considerable progress has been made in designing proteins that mimic the structure of native proteins, the goal of reproducing both the structure and the function of native proteins -- especially metal-containing proteins called metalloproteins -- has been elusive.

Lu's research group, including lead author Natasha Yeung, and collaborators at the University of Illinois and at Brookhaven National Laboratory, are among the first to design a protein that mimics both the structure and the function of a metalloprotein. The researchers described their work in the journal Nature, published online on Nov. 25.

Nitric-oxide reductase is a key enzyme in the nitrogen cycle that is critical for life. Nitric oxide plays a key role in cell signaling and host-pathogen responses. Therefore, study of nitric-oxide reductase is an important step toward understanding these physiological and pathological processes.

It has been difficult to study nitric-oxide reductase, however, as it is a membrane protein that is not water soluble.

To mimic the structure and function of nitric-oxide reductase, the researchers began with myoglobin, a small muscle protein. Although smaller than nitric-oxide reductase and water soluble, myoglobin can reproduce key features of the native system. Into this scaffold protein the researchers engineered a new iron binding site consisting of three histidines and one glutamate.

In addition to their structural roles, the histidines and glutamate in the active site may also provide the two protons required for nitric oxide reduction.

"The designed protein models both the structure and the function of nitric-oxide reductase, and offers additional insight that the active site glutamate is required for both iron binding and reduction activity," Lu said. "The designed protein also serves as an excellent model for further mechanistic studies of nitric-oxide reductase."

Lu is affiliated with the university's Beckman Institute, the departments of biochemistry, bioengineering, and materials science and engineering, the Frederick Seitz Materials Research Laboratory, and the Center of Biophysics and Computational Biology.

The National Institutes of Health funded the work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Synthetic protein mimics structure, function of metalloprotein in nature." ScienceDaily. ScienceDaily, 13 December 2009. <www.sciencedaily.com/releases/2009/12/091210111152.htm>.
University of Illinois at Urbana-Champaign. (2009, December 13). Synthetic protein mimics structure, function of metalloprotein in nature. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2009/12/091210111152.htm
University of Illinois at Urbana-Champaign. "Synthetic protein mimics structure, function of metalloprotein in nature." ScienceDaily. www.sciencedaily.com/releases/2009/12/091210111152.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins