Featured Research

from universities, journals, and other organizations

Protein dynamics: Hidden, transient life of a protein between active states illuminated

Date:
January 8, 2010
Source:
Brandeis University
Summary:
Understanding the incredibly speedy atomic mechanisms at work when a protein transitions from one shape to another has been an elusive scientific goal for years, but an essential one for elucidating the full panoply of protein function. How do proteins transition, or interconvert, between distinct shapes without unfolding in the process? Until now, this question has been a hypothetical one, approached by computation only rather than experimentation.

The molecular path of the signaling protein from the active to the inactive state.
Credit: Francesco Pontiggia and Dorothee Kern

Understanding the incredibly speedy atomic mechanisms at work when a protein transitions from one shape to another has been an elusive scientific goal for years, but an essential one for elucidating the full panoply of protein function. How do proteins transition, or interconvert, between distinct shapes without unfolding in the process? Until now, this question has been a hypothetical one, approached by computation only rather than experimentation.

In a groundbreaking study this week in Cell, Brandeis researchers reveal for the first time computationally and experimentally the molecular pathway that a protein takes to cross the energy barrier, the "climb over the mountain." The study reports how folded proteins can efficiently change shape while avoiding unfolding, a critical requirement for any protein in the cell.

Using computation and nuclear magnetic resonance (NMR) spectroscopy, the researchers were able to experimentally measure how fast the signaling nitrogen regulatory protein jumps from one shape to another, and to shed light into the atomistic pathway.

"If you think of crossing the energy barrier as reaching the summit of a mountain, what we revealed is the molecular "hiking" path the protein follows from a deep valley, to the area around the summit, and then back into another not quite-as-deep valley," said Brandeis biophysicist and Howard Hughes Medical Institute (HHMI) Investigator Dorothee Kern.

Historically, scientists had proposed that proteins must break apart, or partially unfold, between distinct active shapes. "That never made sense to me," said Kern, "because if you break the shape of the protein, you have to build it new again and that is too complicated and energy-inefficient; it would take too long."

Kern said they discovered that the signaling protein unfolds on the minute timescale, once every five minutes, while interconversion between the functionally active states happens on the microsecond timescale (10,000 times per second).

First computationally and then experimentally, Kern and her colleagues showed that the protein actually never unfolds on the way, but rather goes through transient, or bridging, states that last less than a nanosecond. The proof? In the transient states, hydrogen bonds, which do not exist in the protein's ground states (the valleys), enable function while circumventing the risk of unfolding.

"This is a proof of principle paper; it changes the paradigm of protein dynamics because these transient nonnative atomic interactions were really hidden before," said Kern. "This paper underscores the need to develop an iterative approach between computation and experimentation."

Understanding protein dynamics is essential to improving protein design for all kinds of applications, including engineering, materials science, and pharmaceuticals. "We don't understand how to make proteins change their shape; the missing link is understanding how nature very efficiently and specifically changes the shape of proteins," said Kern. "If we knew the physics of proteins better, it would help us design functional proteins."

The study was funded by grants from HHMI, National Institutes of Health, the National Science Foundation, the Department of Energy, and the Keck Foundation.


Story Source:

The above story is based on materials provided by Brandeis University. Note: Materials may be edited for content and length.


Cite This Page:

Brandeis University. "Protein dynamics: Hidden, transient life of a protein between active states illuminated." ScienceDaily. ScienceDaily, 8 January 2010. <www.sciencedaily.com/releases/2009/12/091210125918.htm>.
Brandeis University. (2010, January 8). Protein dynamics: Hidden, transient life of a protein between active states illuminated. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/12/091210125918.htm
Brandeis University. "Protein dynamics: Hidden, transient life of a protein between active states illuminated." ScienceDaily. www.sciencedaily.com/releases/2009/12/091210125918.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins