Featured Research

from universities, journals, and other organizations

Researchers pin down long-elusive protein that's essential to 'life as we know it'

Date:
January 7, 2010
Source:
American Society for Biochemistry and Molecular Biology
Summary:
A team of researchers is being recognized for devising a new way to study a human protein that long has evaded close scrutiny by scientists investigating its role in the communication of important genetic messages inside a cell's nucleus to workhorse molecules found elsewhere.

A team of researchers is being recognized for devising a new way to study a human protein that long has evaded close scrutiny by scientists investigating its role in the communication of important genetic messages inside a cell's nucleus to workhorse molecules found elsewhere.

Related Articles


Last year, the team, led by J. Andrew Hockert, at the time a doctoral researcher at the Texas Tech University Health Science Center School of Medicine, put in its crosshairs the protein known as CstF-64. Now, in the Jan. 1 issue of the Journal of Biological Chemistry, the team is reporting its successes.

Short for "cleavage stimulation factor-64," CstF-64 carries out countless activities required to keep its parent cell alive and well. Hockert's team was particularly interested in the protein because it controls polyadenylation, an essential step in gene communication that involves tacking on information to genetic messages.

For years, CstF-64 refused to give up its secrets when scientists zeroed in. The protein has so many important duties that tweaks prompted a sort of murder-suicide: It killed its own parent cell and, so, died with it.

"Previously, it had been very hard to examine the functions of most of the polyadenylation proteins in cells because polyadenylation is essential for 'life as we know it.' If we perturbed polyadenylation in any way, the cells died, and we could not measure anything," says Hockert, who is now an assistant professor at the University of the Cumberlands in Williamsburg, Ky.

Undeterred, Hockert set out to observe -- in a living cell -- how the elusive CstF-64 gets from its home base in the cytoplasm, or outer region of a cell, and into the nucleus, where genetic messages originate.

For CstF-64, it's all about location, location, location. Only once in the nucleus can it start doing its job in the polyadenylation process, getting the messages ready to be taken out to worker molecules in the cytoplasm.

But to make his observations, Hockert had to employ what co-investigator Clinton MacDonald calls "a trick."

"Andrew realized we can make a version of the protein that is different than the regular version already in the cell. We can mutate it," says MacDonald, an associate professor at Texas Tech who oversaw Hockert's work. "And, if you put that mutated version of the protein in the cell, it only works on the genes we tell it to work on and not the rest. So, it doesn't kill the cell."

Having come up with a clever way to study and measure different aspects of the protein in a living cell, MacDonald says, the team then had to pick one in particular on which to focus.

"The feature Andrew chose to examine was how CstF-64 interacted with another polyadenylation protein and how that interaction allowed both those proteins to work inside the nucleus," MacDonald says.

As important as CstF-64 is to gene expression, it doesn't exactly have "VIP" status when it comes to gaining access to the nucleus. Lacking what is known as a nuclear localization signal, it has to rely on its partner protein, CstF-77, to lead the way to and get in the door.

"We already knew the sequence of our protein, CstF-64, and so we knew it didn't have a special signal to get it in the nucleus. So, we hypothesized something else was dragging it in, and the most likely thing was a partner protein working alongside it," Hockert explains.

With the mutant version of the protein in place, the team soon discovered their hypothesis was correct: CstF-64 had to bind with CstF-77 to get into the cell's command center. Furthermore, MacDonald says, the team was able to report which piece of CstF-64 binds with its partner -- "the hinge domain."

Having overcome the cell-death obstacle and having confirmed the significance of the "hinge" domain for nuclear localization, the researchers expect their technique will be used by future scientists to monitor a variety of protein-protein interactions in living cells and better understand the cell's polyadenylation machinery.

The project was supported by grants from the National Institutes of Health, the South Plains Foundation and the Texas Tech University Health Sciences Center School of Medicine. By being named a "Paper of the Week" by the Journal of Biological Chemistry, Hockert's article has been categorized in the top 1 percent of papers reviewed by the editorial board in terms of significance and overall importance.


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Biochemistry and Molecular Biology. "Researchers pin down long-elusive protein that's essential to 'life as we know it'." ScienceDaily. ScienceDaily, 7 January 2010. <www.sciencedaily.com/releases/2010/01/100104114551.htm>.
American Society for Biochemistry and Molecular Biology. (2010, January 7). Researchers pin down long-elusive protein that's essential to 'life as we know it'. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2010/01/100104114551.htm
American Society for Biochemistry and Molecular Biology. "Researchers pin down long-elusive protein that's essential to 'life as we know it'." ScienceDaily. www.sciencedaily.com/releases/2010/01/100104114551.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Florida Might Legalize Black Bear Hunting

Florida Might Legalize Black Bear Hunting

Newsy (Jan. 24, 2015) A string of black bear attacks has Florida officials considering lifting the ban on hunting the animals to control their population. Video provided by Newsy
Powered by NewsLook.com
Ebola Killing Large Portion Of Ape Population

Ebola Killing Large Portion Of Ape Population

Newsy (Jan. 23, 2015) Experts estimate Ebola has wiped out one-third of the world&apos;s gorillas and chimpanzees. Video provided by Newsy
Powered by NewsLook.com
Controversy Shrouds Captive Killer Whale in Miami

Controversy Shrouds Captive Killer Whale in Miami

Reuters - Light News Video Online (Jan. 23, 2015) Activists hope the National Oceanic and Atmospheric Agency (NOAA) will label killer whales endangered, allowing lawyers to sue a Miami aquarium to release an orca into the wild after 44 years. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
‘Healthy’ Foods That Surprisingly Pack on Pounds

‘Healthy’ Foods That Surprisingly Pack on Pounds

Buzz60 (Jan. 23, 2015) Some &apos;healthy&apos; foods are actually fattening. Fitness and nutrition expert John Basedow (@JohnBasedow) shines a light on the sneaky foods like nuts, seeds, granola, trail mix, avocados, guacamole, olive oil, peanut butter, fruit juices and salads that are good for you...but not so much for your waistline. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins