Featured Research

from universities, journals, and other organizations

Water movements can shape fish evolution

Date:
February 4, 2010
Source:
University of Minnesota
Summary:
Researchers have found that the hydrodynamic environment of fish can shape their physical form and swimming style.

The hydrodynamic environment of fish can shape their physical form and swimming style.
Credit: Image courtesy of University of Minnesota

Researchers from the University of Minnesota's Institute of Technology have found that the hydrodynamic environment of fish can shape their physical form and swimming style. The research, available on the Journal of Experimental Biology Web site, was sponsored by the National Science Foundation's National Center for Earth-surface Dynamics.

Catch a glimpse of a fish's body shape, and you can often guess how speedy it is. Tuna and mackerel look as if they should outpace frilly reef fish and eels. But how have all of these diverse body shapes evolved? Have fish bodies been shaped by the hydrodynamics of their environment or did they evolve for other reasons?

Turning to computational fish for answers, professor of Civil Engineering Fotis Sotiropoulos, along with postdoctoral researcher Iman Borazjani, from the university's St. Anthony Falls Laboratory decided to race hybrid and realistic fish in a massive parallel computer cluster to find out what influence the aquatic environment has had on fish shapes and swimming techniques.

But building the computational fish was far from straightforward. "We started this work over five years ago," says Sotiropoulos. "It was a challenge because we had never simulated anything living before."

Borazjani explains that the hydrodynamic forces exerted on swimmers vary enormously depending on their size and speed. Knowing that mackerel and eels swimming in water generate and thus experience different hydrodynamic environments, the duo simulated these different environments by varying tail beat frequencies and fluid viscosity (syrupiness).

Building two computational mackerels (one that beat its tail like a mackerel and a second that wriggled like an eel) and two eels (one that wriggled and another that beat its tail like a mackerel), the engineers set the fish racing from standing starts and noted how they performed.

The results showed clearly that all fish swam more efficiently if they had the body form or swimming style appropriate to the speeds at which they swam. For example, a lamprey that needed to swim faster could gain efficiency -- which for a real fish would mean tiring less quickly -- if it changed its shape or swimming style to mimic a mackerel. And a mackerel that had to move slowly would be more efficient if it could change shape or swimming style to mimic a lamprey. This is evidence that a fish's optimal range of swimming speeds generates hydrodynamic forces that influence the shape and swimming style it will evolve.

"From these experiments, we can deduce that real mackerel and eel's swimming styles are perfectly adapted to the hydrodynamic environments that they inhabit," says Sotiropoulos. The method could be adapted to study how a fluid environment molds the evolution of other organisms and to design robots that would swim at different speeds or in water of different viscosities, the researchers say.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. Knight et al. Simulated fish races suggest that water shaped fish. Journal of Experimental Biology, 2010; 213 (1): i DOI: 10.1242/jeb.041020

Cite This Page:

University of Minnesota. "Water movements can shape fish evolution." ScienceDaily. ScienceDaily, 4 February 2010. <www.sciencedaily.com/releases/2010/02/100204144813.htm>.
University of Minnesota. (2010, February 4). Water movements can shape fish evolution. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/02/100204144813.htm
University of Minnesota. "Water movements can shape fish evolution." ScienceDaily. www.sciencedaily.com/releases/2010/02/100204144813.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com
California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins