Featured Research

from universities, journals, and other organizations

Road mapping could be key to curing TB

Date:
February 8, 2010
Source:
Society for General Microbiology
Summary:
The complex chain of metabolic events in bacteria that lead to fatal diseases such as tuberculosis may be better understood using mathematical models, according to a new article.

The complex chain of metabolic events in bacteria that lead to fatal diseases such as tuberculosis (TB) may be better understood using mathematical models, according to an article published in the February issue of Microbiology Today.

Scientists at the University of Surrey are using this new 'systems biology' approach to try and understand the metabolic changes that occur in the bacterium Mycobacterium tuberculosis which allow it to survive dormant in host cells for decades. A more complete knowledge of these changes could allow new drugs to be developed against such 'persistent' bacterial cells, which in turn would revolutionise TB control.

The classic approach to understanding biological functions in mammals and microbes alike has been based on the assumption that a single gene is primarily responsible for a single function -- which can be inhibited by simply blocking the gene. This gene-centric approach has led to huge breakthroughs in scientific understanding of cellular processes, but is less useful for understanding complex functions such as metabolism. In this case, blocking a single gene does not impair function because other genes in the network are able to compensate to maintain that function. This suggests it may be more realistic to assume that many genes are likely to have minor roles in any number of functional pathways.

Professor Johnjoe McFadden who works on TB at the University of Surrey likens metabolic pathways in cells to Britain's road network. "For example, we may identify a particular road, say the A45, that takes goods from Birmingham to Coventry and call it the BtoC road -- or BtoC gene," he said. "Blocking the A45 might be expected to prevent goods from Birmingham reaching Coventry. But of course it doesn't because there are lots of other ways for the goods to get through. In truth, the 'road' (or gene) from BtoC isn't just the A45, but includes all those other routes."

A good starting point to study functional pathways is a mathematical model of the cell that takes into account the system properties of the whole network, rather than focussing on key control points. Professor McFadden explains how microbes are well suited to this systems-level approach. "Microbes have fewer genes to interact with each other making computational modelling simpler. Also, unlike multicellular organisms, microbes are able to precisely control their growth. This 'steady-state growth' is an important assumption that mathematical models are based on."


Story Source:

The above story is based on materials provided by Society for General Microbiology. Note: Materials may be edited for content and length.


Cite This Page:

Society for General Microbiology. "Road mapping could be key to curing TB." ScienceDaily. ScienceDaily, 8 February 2010. <www.sciencedaily.com/releases/2010/02/100205102556.htm>.
Society for General Microbiology. (2010, February 8). Road mapping could be key to curing TB. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/02/100205102556.htm
Society for General Microbiology. "Road mapping could be key to curing TB." ScienceDaily. www.sciencedaily.com/releases/2010/02/100205102556.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

AP (Oct. 17, 2014) Two white lion cubs were born in Belgrade zoo three weeks ago. White lions are a rare mutation of a species found in South Africa and some cultures consider them divine. (Oct. 17) Video provided by AP
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
Sweet Times for Hard Cider Makers

Sweet Times for Hard Cider Makers

AP (Oct. 16, 2014) With hard cider making a hardcore comeback across the country, craft makers are trying to keep up with demand and apple growers are tapping a juicy new revenue stream. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Meet Garfi the Angry Cat

Meet Garfi the Angry Cat

Buzz60 (Oct. 16, 2014) Garfi is one frowny, feisty feline - downright angry! Ko Im (@koimtv) introduces us to the latest animal celebrity taking over the Internet. You can follow more of Garfi's adventures on Twitter (@MeetGarfi) and Facebook (Garfi). Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins