Featured Research

from universities, journals, and other organizations

Cone snails and spiders help neurobiologists investigate ion channels

Date:
February 15, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
Neurotoxins from cone snails and spiders help neurobiologists to investigate the function of ion channels in neurons. They have developed a system which for the first time allows the targeted, long-lasting investigation of ion channel function in mammals and also their blockade with neurotoxins. In transgenic mice they succeeded in blocking chronic pain by introducing a toxin gene into the organism.

Neurotoxins of cone snails and spiders block neurotransmission and chronic pain.
Credit: Graphics: Sebastian Auer/Copyright: MDC

Neurotoxins from cone snails and spiders help neurobiologists Sebastian Auer, Annika S. Stürzebecher and Dr. Ines Ibañez-Tallon of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, to investigate the function of ion channels in neurons. Ion channels in the cell membrane enable cells to communicate with their environment and are therefore of vital importance.

Related Articles


The MDC researchers have developed a system which for the first time allows the targeted, long-lasting investigation of ion channel function in mammals and also the blockade of the ion channels with neurotoxins. In transgenic mice they succeeded in blocking chronic pain by introducing a toxin gene into the organism.

There are approximately 500 species of cone snails, each producing 50 -- 200 different conotoxins. A similar number of peptide toxins are produced by snakes, spiders, sea anemones, scorpions and other venomous animals. The animals use the neurotoxins to paralyze their prey.

Scientists estimate that more than 100,000 neurotoxins exist. They have become a topic of enormous research interest: Using neurotoxins researchers can target different ion channels, receptors and other signaling molecules and characterize their physiological function.

This kind of research can also give them insight into disease processes and eventually help them to find new therapies to eventually block hyperactive ion channels. For instance, a compound (Ziconotide) based on the toxin of a cone snail is already used to treat severe chronic pain in patients.

Dr. Ibañez-Tallon's research group is concentrating on two ion channels in the membrane of neurons which are activated by electric stimulation (action potential). Once activated, they allow the influx of calcium ions into the neuron, and the cell then releases chemicals (neurotransmitters), which send the signal to the next neuron.

During the last decades soluble neurotoxins have greatly helped in the characterization of ion channels and receptors because of their ability to specifically bind and inhibit these channels. However, soluble neurotoxins can only be applied for limited time, and their activity cannot be directed to specific cells.

Sebastian Auer, Annika S. Stürzebecher and Dr. Ibañez-Tallon managed to circumvent this problem with genetic engineering. Using lentiviruses they developed a shuttle to deliver the genes of cone snail and spider toxins into the neurons. The result: The neurons now long-lastingly produce toxins which directly bind to the calcium ion channels the researchers want to investigate. This was the first step -- the targeted and long-lasting binding of the toxins to a specific ion channel in the cell culture.

Secondly, the researchers were able to demonstrate that with their tool they can also express toxin genes in animals in a targeted way and also lastingly characterize ion channels. In transgenic mice they were able to block certain calcium ion channels with their toxins and thus block chronic pain.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Auer et al. Silencing neurotransmission with membrane-tethered toxins. Nature Methods, 2010; DOI: 10.1038/nmeth.1425

Cite This Page:

Helmholtz Association of German Research Centres. "Cone snails and spiders help neurobiologists investigate ion channels." ScienceDaily. ScienceDaily, 15 February 2010. <www.sciencedaily.com/releases/2010/02/100210101510.htm>.
Helmholtz Association of German Research Centres. (2010, February 15). Cone snails and spiders help neurobiologists investigate ion channels. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2010/02/100210101510.htm
Helmholtz Association of German Research Centres. "Cone snails and spiders help neurobiologists investigate ion channels." ScienceDaily. www.sciencedaily.com/releases/2010/02/100210101510.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) — Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins