Featured Research

from universities, journals, and other organizations

Scientists crash test DNA’s replication machinery

Date:
March 1, 2010
Source:
Rockefeller University
Summary:
Enzymes that travel along DNA to copy or transcribe it -- the crucial processes underlying cell replication and protein production -- aren't coordinated by a central dispatcher. In fact, they often collide. Now, researchers have discovered that when DNA-copying machines run head-on into proteins performing less critical tasks, they kick the obstacles aside and continue on their way.

Enzymes that travel along DNA to copy or transcribe it -- the crucial processes underlying cell replication and protein production -- aren't coordinated by a central dispatcher. In fact, they often collide. Now, Rockefeller University researchers have discovered that when DNA-copying machines run head-on into proteins performing less critical tasks, they kick the obstacles aside and continue on their way.

The finding, reported in the January 29 issue of Science, reveals new details about the "rules of the road" that help cells make accurate copies of their genetic material -- essential for producing healthy offspring.

In preparation for cell division, cells rely on complex protein machines called replisomes to untwist and tease apart the double helix of DNA. As the two strands separate, the replisome copies the strands, producing two complete sets of the genome. The replisome moves at high speed for long distances on DNA, but it runs along the same path as the RNA polymerases that transcribe DNA into messenger RNA, the genes' instructions for manufacturing proteins. Sometimes these convoys move in opposite directions and collisions are unavoidable.

To find out what happens when they collide, Michael O'Donnell, head of Rockefeller's Laboratory of DNA Replication and a Howard Hughes Medical Institute investigator, and his colleague Richard Pomerantz reconstructed a cellular traffic accident in a test tube. They developed a system that allowed them to assemble the replisome from the relatively simple bacteria Escherichia coli at one end of a DNA strand -- a years-long endeavor in O'Donnell's lab -- and then set it on a collision course with a stalled RNA polymerase from the opposite direction. The scientists found that the DNA replication machine managed to copy the full length of the DNA molecule, indicating that it had traveled the entire distance, despite the obstacle. Further analysis of the collision suggested that the replisome stops when it encounters the RNA polymerase, shoves the RNA polymerase off the DNA and then proceeds.

The scientists also reran the experiments adding a transcription repair protein called Mfd, which is known to help eliminate transcription machinery that has stalled at a damaged section of DNA. The replisome made even more full-length copies of the DNA when Mfd was present, suggesting the protein helps give RNA polymerase the boot in their experimental system as well.

A deficiency of transcription-repair coupling proteins such as Mfd causes the rare congenital recessive disorder called Cockayne syndrome, a disease that is marked by a small head and stature and accelerated aging. The experiments illustrate a new role for Mfd enabling the replisome to move past an RNA polymerase block and effectively copy DNA, which could have implications for understanding the disorder, O'Donnell says.

In addition, the research provides more evidence that the replisome is sturdy and does not fall apart when it hits a road block, as some experiments had suggested. "The replisome is very stable," says O'Donnell. "It just sits there until it finally wins." It makes sense biologically to give the replisome priority, he adds. "Losing an RNA transcript is no big deal. But the consequences would be dire if the replisome fell apart every time it met an RNA polymerase. These collisions are probably common in the cell, so keeping the replisome moving ensures that DNA replication proceeds neatly and rapidly."

The recent experiments continue a line of research O'Donnell and Pomerantz first reported in Nature in 2008, which used the same experimental set-up to study what happens when the replisome rear-ends a stalled RNA polymerase rather than strikes it head on. The replisome moves along DNA at a brisk clip, about 15 to 30 times faster than RNA polymerase, and the rear-ending actually happens more frequently in nature than the head-to-head encounter, O'Donnell says. In the earlier work, the researchers found that the replisome displaced RNA polymerase but used the messenger RNA to continue leading strand synthesis.

"This discovery may explain the decades-old dilemma between work from the 1970s that observed discontinuous synthesis on the leading and lagging strands, and the current semidiscontinuous model in the textbooks based on studies of replisome mechanisms outside the context of a living cell, that is, without concurrent transcription," O'Donnell says.

O'Donnell is now searching for factors other than Mfd that push the replisome through blocks. He'd also like to know whether the replisome in eukaryotic cells, such as yeast or mammalian cells, behaves similarly to the bacterial complex he and Pomerantz have studied.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pomerantz et al. Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase. Science, 2010; 327 (5965): 590 DOI: 10.1126/science.1179595

Cite This Page:

Rockefeller University. "Scientists crash test DNA’s replication machinery." ScienceDaily. ScienceDaily, 1 March 2010. <www.sciencedaily.com/releases/2010/02/100227212116.htm>.
Rockefeller University. (2010, March 1). Scientists crash test DNA’s replication machinery. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/02/100227212116.htm
Rockefeller University. "Scientists crash test DNA’s replication machinery." ScienceDaily. www.sciencedaily.com/releases/2010/02/100227212116.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins