Featured Research

from universities, journals, and other organizations

Second plant pathway could improve nutrition, biofuel production

Date:
April 3, 2010
Source:
Purdue University
Summary:
Scientists have defined a hidden second option plants have for making an essential amino acid that could be the first step in boosting plants' nutritional value and improving biofuel production potential.

Purdue University scientists have defined a hidden second option plants have for making an essential amino acid that could be the first step in boosting plants' nutritional value and improving biofuel production potential.

The amino acid phenylalanine is required to build proteins and is a precursor for more than 8,000 other compounds essential to plants, including lignin, which allows plants to stand upright but acts as a barrier in the production of cellulosic ethanol.

It had been believed that plants could use two pathways to create phenylalanine. Natalia Dudareva, a professor of horticulture, and Hiroshi Maeda, a postdoctoral researcher in Dudareva's laboratory, have confirmed that while plants predominantly use one pathway, they have another at their disposal. The existence of this second pathway might one day allow scientists to increase a plant's production of the essential amino acid. Their research was published in the early online version of the journal Plant Cell.

"That would allow us to increase the nutritional value of some food," Maeda said. "But also by increasing these compounds, the plants would be better able to protect themselves from changes in the environment."

Maeda added that reducing phenylalanine could lead to a reduction of lignin in plants, which would improve digestibility of cellulosic materials for ethanol production.

Phenylalanine is one of the few essential amino acids that humans and animals cannot synthesize, so it must come from plants. It is produced when sugars enter a plant's shikimate pathway, which creates a link between the processing of sugars and the generation of aromatic compounds. The next steps had not been known until now, and were thought to involve one of two proposed routes -- the phenylpyruvate or arogenate pathways.

Dudareva and Maeda found a gene responsible for phenylalanine production, and suppression of the gene expression knocked out 80 percent of the phenylalanine content in petunias. The hypothesis was that the gene suppression would act like a clogged pipe, creating an abundance of compounds that would have later become phenylalanine in a normal plant.

But that's not what happened.

"These plants knew that the last step of phenylalanine production was down and slowed the first steps," Dudareva said.

Maeda said the plant created some sort of feedback mechanism that slowed down the entry point of the shikimate pathway.

Dudareva and Maeda wanted to see what would happen if they forced the shikimate pathway to function, so they gave the petunias shikimic acid. The plants were flooded with the upstream compounds as expected, but since they could not use the usual arogenate pathway to convert them to phenylalanine, they used another path that scientists had only theorized existed.

"What this tells us is this other pathway could be active under certain conditions," Dudareva said.

Understanding how the pathways work is a first step in finding ways to increase phenylalanine for boosting nutritional values of foods, or decreasing it, which may help in biofuel production.

Dudareva and Maeda will next try to determine how the plant creates feedback to the shikimate pathway. Disrupting that feedback could lead to an abundant production of phenylalanine in plants. The National Science Foundation funded the research.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Brian Wallheimer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maeda et al. RNAi Suppression of Arogenate Dehydratase1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals. The Plant Cell Online, 2010; DOI: 10.1105/tpc.109.073247

Cite This Page:

Purdue University. "Second plant pathway could improve nutrition, biofuel production." ScienceDaily. ScienceDaily, 3 April 2010. <www.sciencedaily.com/releases/2010/03/100331122654.htm>.
Purdue University. (2010, April 3). Second plant pathway could improve nutrition, biofuel production. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2010/03/100331122654.htm
Purdue University. "Second plant pathway could improve nutrition, biofuel production." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331122654.htm (accessed September 22, 2014).

Share This



More Plants & Animals News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins