Featured Research

from universities, journals, and other organizations

A genomic achievement that's for the birds -- and for humans

Date:
March 31, 2010
Source:
NIH/National Human Genome Research Institute
Summary:
An international research consortium has identified more than 800 genes that appear to play a role in the male zebra finch's ability to learn elaborate songs from his father. The researchers also found evidence that song behavior engages complex gene regulatory networks within the brain of the songbird -- networks that rely on parts of the genome once considered junk.

An international research consortium has identified more than 800 genes that appear to play a role in the male zebra finch's ability to learn elaborate songs from his father. The researchers also found evidence that song behavior engages complex gene regulatory networks within the brain of the songbird- networks that rely on parts of the genome once considered junk.

The zebra finch genome sequence and analysis published in the April 1 issue of the journal Nature was funded in part by the National Human Genome Research Institute, a component of the National Institutes of Health.

"By comparing the finch genome with the human genome, we should now be able to expand our understanding of learned vocalization in humans. Such information may help researchers who are striving to develop new ways to diagnose and treat communication disorders, such as stuttering and autism," said NHGRI Director Eric D. Green, M.D., Ph.D.

The zebra finch (Taeniopygia guttata), which derives its name from the black-and-white stripes on the male finch's throat, serves as a valuable model for studying human speech, communication and neurological disorders. The finch is the first songbird -- and the second bird, after the chicken -- to have its genome sequenced.

A major reason researchers decided to study the zebra finch genome was the male bird's ability to learn complex songs from his father. At first, a fledgling finch makes seemingly random sounds, much like the babble of human babies. With practice, the young bird eventually learns to imitate his father's song. Once the bird has mastered the family song, he will sing it for the rest of his life and pass it on to the next generation.

This ability to communicate through learned vocalization is lacking in chickens and female zebra finches. Though female finches do perceive and remember songs, researchers suggest that their inability to learn songs may be due to differences in sex hormones, as well as chromosomal sex differences affecting the brain. In addition to male songbirds, other animals that communicate through learned vocalizations include other songbirds, parrots, hummingbirds, bats, whales and humans.

The chicken and zebra finch genomes are similar in many ways. Both have about 1 billion DNA base pairs -- roughly one-third the size of a human genome. However, researchers discovered that some genes associated with vocal behavior have undergone accelerated evolution in the finch. For example, they found a disproportionately high number of ion channel genes among the 49 genes in the finch genome that are suppressed, or turned off, in response to song. Ion channels allow the movement of ions (electrically charged particles) across cell membranes. Human ion channel genes have been shown to play key roles in many aspects of behavior, neurological function and disease. Consequently, the researchers suspect that the evolution of this group of genes in songbirds may be essential for learned vocalization.

The consortium, led by Richard K. Wilson, Ph.D., director of the Genome Center at Washington University School of Medicine in St. Louis, also identified portions of the genome crucial to regulating the activity of genes involved in song behavior. While many parts of the genome are engaged during vocal communication, one surprising finding was the extensive involvement of non-protein coding ribonucleic acids (ncRNAs).

Protein-coding components make up just a small fraction of the genomes of humans and other animals. It was once thought that the non-coding part of the genome was not essential, amounting to biological junk. Recently, researchers have begun to amass evidence that many parts of the non-coding regions serve important biological functions. Analysis of the zebra finch genome sequence suggested that ncRNAs, which have been proposed to contribute to the evolution of greater complexity in humans and other animals, may be a driving force behind learned vocal communication.

"These findings will transform scientific research on the songbird system," said Story Landis, Ph.D., director of the National Institute of Neurological Disorders and Stroke (NINDS), which also provided support for the study. "Although scientists understand much about how songbirds acquire and modify their vocal patterns, the availability of the genome sequence will allow insight into the molecular underpinnings of this natural behavior. This could lead to better understanding of learning and memory, neural development and adaptation, and speech and hearing disorders."


Story Source:

The above story is based on materials provided by NIH/National Human Genome Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Human Genome Research Institute. "A genomic achievement that's for the birds -- and for humans." ScienceDaily. ScienceDaily, 31 March 2010. <www.sciencedaily.com/releases/2010/03/100331141417.htm>.
NIH/National Human Genome Research Institute. (2010, March 31). A genomic achievement that's for the birds -- and for humans. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/03/100331141417.htm
NIH/National Human Genome Research Institute. "A genomic achievement that's for the birds -- and for humans." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331141417.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) — The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) — Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins