Featured Research

from universities, journals, and other organizations

Fundamental discovery about how gene expression functions in bacteria

Date:
April 26, 2010
Source:
NYU Langone Medical Center / New York University School of Medicine
Summary:
Researchers have discovered and characterized a general mechanism that controls transcription elongation in bacteria. The mechanism relies on physical cooperation between a moving ribosome and RNA polymerase (RNAP) that allows for a precise adjustment of the transcriptional yield in response to translational needs. The study could lead to the development of new ways to interfere with bacterial gene expression and serve as a new target for antimicrobial therapy.

Researchers from NYU Langone Medical Center have discovered and characterized a general mechanism that controls transcription elongation in bacteria. The mechanism, described in the April 23 issue of Science, relies on physical cooperation between a moving ribosome and RNA polymerase (RNAP) that allows for a precise adjustment of the transcriptional yield in response to translational needs. The study could lead to the development of new ways to interfere with bacterial gene expression and serve as a new target for antimicrobial therapy.

"The finding that the active ribosome controls the rate of transcription at every protein-coding gene and under various growth conditions was quite unexpected -- and the results are far reaching," says Evgeny Nudler, PhD, the Julie Wilson Anderson Professor of Biochemistry at NYU Langone Medical Center and lead author of the study. "It appears that the ribosome not just moves behind RNAP while translating the nascent transcript, but it is actually able to 'push' the paused or arrested RNAP molecules forward, thereby accelerating RNAP speed and also helping RNAP to traverse road blocks imposed by DNA binding proteins."

In the study, Nudler and colleagues demonstrate that the rate of transcription elongation perfectly matches the rate of translation under various growth conditions. They also show that the transcription rate depends on codon usage, or the frequency of rare codons which modulates the speed of a ribosome. Finally, the authors illustrate that it is the speed of the ribosome that determines the speed of RNAP -- whereby the acceleration or deceleration of a ribosome by chemical or genetic manipulation leads to corresponding changes in RNAP speed.

The implications of the study are important because it could lead to the development of novel ways to disrupt gene expression and the creation of new antimicrobial therapies. Not only does this cooperation mechanism save energy by limiting any excessive transcripts that cannot be translated in a timely manner, but it also prevents premature transcription termination by Rho factor, ensuring continuous coupling between transcription and translation. Thus, bacteria rely on macromolecule trafficking and cooperation, a fundamentally novel mechanism, to finely control expression of each individual gene in response to nutrient availability and growth phase.

Study co-authors also include Sergey Proshkin of the Department of Biochemistry at NYU Langone Medical Center, A. Rachid Rahmouni of the Centre de Biophysique Moleculaire in France and Alexander Mironov at the State Research Institute of Genetics and Selection of Industrial Microorganisms in Russia.

This work was supported by the grants from the National Institutes of Health in Bethesda, Maryland and the Dynasty Foundation in Moscow, Russia.


Story Source:

The above story is based on materials provided by NYU Langone Medical Center / New York University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sergey Proshkin, A. Rachid Rahmouni, Alexander Mironov, and Evgeny Nudler. Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation. Science, 2010: 328 (5977): 504-508 DOI: 10.1126/science.1184939

Cite This Page:

NYU Langone Medical Center / New York University School of Medicine. "Fundamental discovery about how gene expression functions in bacteria." ScienceDaily. ScienceDaily, 26 April 2010. <www.sciencedaily.com/releases/2010/04/100422153936.htm>.
NYU Langone Medical Center / New York University School of Medicine. (2010, April 26). Fundamental discovery about how gene expression functions in bacteria. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/04/100422153936.htm
NYU Langone Medical Center / New York University School of Medicine. "Fundamental discovery about how gene expression functions in bacteria." ScienceDaily. www.sciencedaily.com/releases/2010/04/100422153936.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins