Featured Research

from universities, journals, and other organizations

Fundamental discovery about how gene expression functions in bacteria

Date:
April 26, 2010
Source:
NYU Langone Medical Center / New York University School of Medicine
Summary:
Researchers have discovered and characterized a general mechanism that controls transcription elongation in bacteria. The mechanism relies on physical cooperation between a moving ribosome and RNA polymerase (RNAP) that allows for a precise adjustment of the transcriptional yield in response to translational needs. The study could lead to the development of new ways to interfere with bacterial gene expression and serve as a new target for antimicrobial therapy.

Researchers from NYU Langone Medical Center have discovered and characterized a general mechanism that controls transcription elongation in bacteria. The mechanism, described in the April 23 issue of Science, relies on physical cooperation between a moving ribosome and RNA polymerase (RNAP) that allows for a precise adjustment of the transcriptional yield in response to translational needs. The study could lead to the development of new ways to interfere with bacterial gene expression and serve as a new target for antimicrobial therapy.

Related Articles


"The finding that the active ribosome controls the rate of transcription at every protein-coding gene and under various growth conditions was quite unexpected -- and the results are far reaching," says Evgeny Nudler, PhD, the Julie Wilson Anderson Professor of Biochemistry at NYU Langone Medical Center and lead author of the study. "It appears that the ribosome not just moves behind RNAP while translating the nascent transcript, but it is actually able to 'push' the paused or arrested RNAP molecules forward, thereby accelerating RNAP speed and also helping RNAP to traverse road blocks imposed by DNA binding proteins."

In the study, Nudler and colleagues demonstrate that the rate of transcription elongation perfectly matches the rate of translation under various growth conditions. They also show that the transcription rate depends on codon usage, or the frequency of rare codons which modulates the speed of a ribosome. Finally, the authors illustrate that it is the speed of the ribosome that determines the speed of RNAP -- whereby the acceleration or deceleration of a ribosome by chemical or genetic manipulation leads to corresponding changes in RNAP speed.

The implications of the study are important because it could lead to the development of novel ways to disrupt gene expression and the creation of new antimicrobial therapies. Not only does this cooperation mechanism save energy by limiting any excessive transcripts that cannot be translated in a timely manner, but it also prevents premature transcription termination by Rho factor, ensuring continuous coupling between transcription and translation. Thus, bacteria rely on macromolecule trafficking and cooperation, a fundamentally novel mechanism, to finely control expression of each individual gene in response to nutrient availability and growth phase.

Study co-authors also include Sergey Proshkin of the Department of Biochemistry at NYU Langone Medical Center, A. Rachid Rahmouni of the Centre de Biophysique Moleculaire in France and Alexander Mironov at the State Research Institute of Genetics and Selection of Industrial Microorganisms in Russia.

This work was supported by the grants from the National Institutes of Health in Bethesda, Maryland and the Dynasty Foundation in Moscow, Russia.


Story Source:

The above story is based on materials provided by NYU Langone Medical Center / New York University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sergey Proshkin, A. Rachid Rahmouni, Alexander Mironov, and Evgeny Nudler. Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation. Science, 2010: 328 (5977): 504-508 DOI: 10.1126/science.1184939

Cite This Page:

NYU Langone Medical Center / New York University School of Medicine. "Fundamental discovery about how gene expression functions in bacteria." ScienceDaily. ScienceDaily, 26 April 2010. <www.sciencedaily.com/releases/2010/04/100422153936.htm>.
NYU Langone Medical Center / New York University School of Medicine. (2010, April 26). Fundamental discovery about how gene expression functions in bacteria. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/04/100422153936.htm
NYU Langone Medical Center / New York University School of Medicine. "Fundamental discovery about how gene expression functions in bacteria." ScienceDaily. www.sciencedaily.com/releases/2010/04/100422153936.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins