Science News
from research organizations

Wine-making yeast shows promise for bioethanol production

Date:
May 14, 2010
Source:
Public Library of Science
Summary:
Researchers have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioethanol alternative to fossil fuels. Combining new high-throughput genome sequencing technology with traditional genetic methods, this study highlights the previously unknown potential of natural S. cerevisiae strains to convert five-carbon sugars into ethanol.
Share:
       
FULL STORY

Researchers from the Stanford University School of Medicine have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioethanol alternative to 'fossil fuels'. Combining new high-throughput genome sequencing technology with traditional genetic methods, this study highlights the previously unknown potential of natural S. cerevisiae strains to convert five-carbon sugars such as xylose into ethanol.

Details are published May 13 in the open-access journal PLoS Genetics.

S. cerevisiae is the primary organism used in the fermentation process required for industrial bioethanol production. However, despite voraciously fermenting the six-carbon sugars, such as glucose, found in cornstarch or sugar cane, it was not thought to be able to ferment the five-carbon sugars that are abundant in agricultural wastes or dedicated crops like switchgrass. As the industry moves towards plant-based ethanol, a strain of yeast that can ferment both types of sugar equally well is highly desirable.

Therefore, Jared Wenger and Katja Schwartz sought to identify previously unstudied Saccharomyces yeast strains with some ability to ferment xylose. They found a number of strains, primarily used in wine-making, which could metabolize this important sugar in order to grow slowly. They studied one strain in particular, applying a new genome sequencing technology to determine the genetic basis of its growth - the presence of a single gene they named XDH1.

Although the ability of these naturally occurring yeasts to grow on this sugar is modest and they are still not as capable at using xylose as other, genetically-modified strains, this discovery may lead to the development of new, industrially-applicable strains of S. cerevisiae for use in large-scale bioethanol production.


Story Source:

The above post is reprinted from materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wenger JW, Schwartz K, Sherlock G. Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae. PLoS Genetics, 2010; 6 (5): e1000942 DOI: 10.1371/journal.pgen.1000942

Cite This Page:

Public Library of Science. "Wine-making yeast shows promise for bioethanol production." ScienceDaily. ScienceDaily, 14 May 2010. <www.sciencedaily.com/releases/2010/05/100513172902.htm>.
Public Library of Science. (2010, May 14). Wine-making yeast shows promise for bioethanol production. ScienceDaily. Retrieved July 4, 2015 from www.sciencedaily.com/releases/2010/05/100513172902.htm
Public Library of Science. "Wine-making yeast shows promise for bioethanol production." ScienceDaily. www.sciencedaily.com/releases/2010/05/100513172902.htm (accessed July 4, 2015).

Share This Page: