Featured Research

from universities, journals, and other organizations

Genetic mismatch keeps yeast species distinct

Date:
July 22, 2010
Source:
Public Library of Science
Summary:
How species form and what keeps them distinct from each other, even though they can interbreed, is a key question in evolution. Researchers have recently identified genes in three closely related yeast species that cause sterility, increasing our understanding of how species can remain distinct.

How species form and what keeps them distinct from each other, even though they can interbreed, is a key question in evolution. Researchers from Taiwan, led by Dr. Jun-Yi Leu, an Assistant Research Fellow from the Institute of Molecular Biology at Academia Sinica, have recently identified genes in three closely-related yeast species that cause sterility, increasing our understanding of how species can remain distinct. The findings are published in the online, open access journal PLoS Biology.

If one species mates with another, the hybrids produced often die or are unable to reproduce. Such hybrids can provide clues about the process of speciation. At the molecular level, one cause of the inability of hybrids to reproduce (reproductive isolation) results from a mismatch between genes, which prevents those genes functioning properly. There are various types of such genetic incompatibility, one of which is a mismatch between genes in the nucleus and those in the mitochondrion (a vital organelle playing a key role in cell respiration, the process by which cells produce energy).

In a previous study, the same team had observed that a nuclear-mitochondrial mismatch caused hybrid sterility between two yeast species. In this study, Dr. Leu and his colleagues attempted to determine whether cytonuclear incompatibility is a common cause of reproductive isolation in yeasts. They investigated hybrids of baker's yeast (Saccharomyces cerevisiae) crossed with two other yeast species -- either S. bayanus or S. paradoxus. They revealed that most of the hybrid spores were respiration-deficient, indicating cytonuclear incompatibility. The researchers then went on to identify that the gene MRS1, which encodes a protein (Mrs1) required to remove an intron from the mitochondrial COX1 gene, and the gene AIM22, which encodes a ligase required for mitochondrial protein lipoylation were responsible for the mismatch.

To trace how this incompatibility evolved, they found that changes in three amino acids are sufficient to make Mrs1 incompatible in hybrids. In addition, the functional change of Mrs1 is accompanied by a change of COX1 introns, indicating a coevolutionary relationship.

"Our results suggest that cytonuclear incompatibility can be achieved by multiple molecular mechanisms and it potentially represents a general mechanism of reproductive isolation in yeast species," said Dr. Leu. "It will be interesting to see whether such mitochondrial-nuclear incompatibility is also involved reproductive isolation in other organisms," he added.

This work was supported by Academia Sinica of Taiwan, National Science Council of Taiwan (grant no. NSC96-2628-B-001-016-MY3) and Human Frontier Science Program (grant no. RGY53/2007).


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chou J-Y, Hung Y-S, Lin K-H, Lee H-Y, Leu J-Y. Multiple Molecular Mechanisms Cause Reproductive Isolation between Three Yeast Species. PLoS Biology, 2010; 8 (7): e1000432 DOI: 10.1371/journal.pbio.1000432

Cite This Page:

Public Library of Science. "Genetic mismatch keeps yeast species distinct." ScienceDaily. ScienceDaily, 22 July 2010. <www.sciencedaily.com/releases/2010/07/100720212923.htm>.
Public Library of Science. (2010, July 22). Genetic mismatch keeps yeast species distinct. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/07/100720212923.htm
Public Library of Science. "Genetic mismatch keeps yeast species distinct." ScienceDaily. www.sciencedaily.com/releases/2010/07/100720212923.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins