Featured Research

from universities, journals, and other organizations

Constant overlap: Scientists identify molecular machinery that maintains important feature of cell's spindle

Date:
August 12, 2010
Source:
European Molecular Biology Laboratory (EMBL)
Summary:
Scientists in Germany have uncovered the molecular mechanism that determines the size of anti-parallel microtubule overlaps in a cell's spindle. In a new study, they were able to reconstruct such overlaps in vitro, and identify two proteins which are sufficient to control the formation and size of this important spindle feature.

If both PRC1 and kinesin-4 are present (top image from video), microtubules (blue) grow only until their overlap (red/yellow) reaches a certain size, which then remains constant. But if only PRC1 is present, microtubule growth is not inhibited in the overlap region, which becomes bigger and bigger (second image from video).
Credit: EMBL/P. Bieling

During cell division, microtubules emanating from each of the spindle poles meet and overlap in the spindle's mid zone. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have uncovered the molecular mechanism that determines the extent of this overlap.

In a study published in Cell, they were able to reconstruct such anti-parallel microtubule overlaps in vitro, and identify two proteins which are sufficient to control the formation and size of this important spindle feature.

Thomas Surrey and his group at EMBL found that one protein, PRC1, bundles together microtubules coming from opposite ends of the cell, attaching them to each other. It then recruits a second protein, a molecular motor from the kinesin-4 subfamily, increasing its concentration in the spindle mid zone. This motor walks along the overlapping microtubules like an officer on patrol, until it reaches one of the ends. When enough kinesin-4 molecules reach the end of the overlap, they inhibit the growth of microtubules there, thus keeping the overlap size constant without affecting microtubules elsewhere in the cell.

The spindle mid zone plays an important role not only in helping to align the chromosomes in metaphase, but also in the final stages of cell division, when it drives the physical separation of the two daughter-cells. But between these two stages, the two ends of the spindle must move away from each other, to drag half the genetic material to each side of the dividing cell. At this point, if PRC1 and kinesin-4 had stopped microtubule growth permanently in the central part of the spindle, the overlap would become smaller and smaller, until eventually the spindle itself would collapse, jeopardising cell division.

But Surrey and colleagues found that PRC1 and kinesin-4 control the overlap size in an adaptive manner. As the spindle stretches and the overlap between microtubules becomes smaller, the scientists posit, the inhibitory effect of kinesin-4 diminishes, allowing the microtubule ends to grow.

"Our findings show how molecules millionths of millimetres small can control the size of a structure about a thousand times larger than themselves," Surrey concludes: "they help us to understand the fundamentals of cell division."


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory (EMBL). Note: Materials may be edited for content and length.


Journal Reference:

  1. Bieling, P., Telley, I.A. & Surrey, T. A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps. Cell, 2010; 142 (3): 420 DOI: 10.1016/j.cell.2010.06.033

Cite This Page:

European Molecular Biology Laboratory (EMBL). "Constant overlap: Scientists identify molecular machinery that maintains important feature of cell's spindle." ScienceDaily. ScienceDaily, 12 August 2010. <www.sciencedaily.com/releases/2010/08/100806080215.htm>.
European Molecular Biology Laboratory (EMBL). (2010, August 12). Constant overlap: Scientists identify molecular machinery that maintains important feature of cell's spindle. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/08/100806080215.htm
European Molecular Biology Laboratory (EMBL). "Constant overlap: Scientists identify molecular machinery that maintains important feature of cell's spindle." ScienceDaily. www.sciencedaily.com/releases/2010/08/100806080215.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins